Skip to content

urdfpy_utils

Code directly adapted from https://github.com/mmatl/urdfpy

Actuator

Bases: URDFType

An actuator.

Parameters

name : str The name of this actuator. mechanicalReduction : str, optional A specifier for the mechanical reduction at the joint/actuator transmission. hardwareInterfaces : list of str, optional The supported hardware interfaces to the actuator.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Actuator(URDFType):
    """An actuator.

    Parameters
    ----------
    name : str
        The name of this actuator.
    mechanicalReduction : str, optional
        A specifier for the mechanical reduction at the joint/actuator
        transmission.
    hardwareInterfaces : list of str, optional
        The supported hardware interfaces to the actuator.
    """

    _ATTRIBS = {
        "name": (str, True),
    }
    _TAG = "actuator"

    def __init__(self, name, mechanicalReduction=None, hardwareInterfaces=None):
        self.name = name
        self.mechanicalReduction = mechanicalReduction
        self.hardwareInterfaces = hardwareInterfaces

    @property
    def name(self):
        """str : The name of this actuator."""
        return self._name

    @name.setter
    def name(self, value):
        self._name = str(value)

    @property
    def mechanicalReduction(self):
        """str : A specifier for the type of mechanical reduction."""
        return self._mechanicalReduction

    @mechanicalReduction.setter
    def mechanicalReduction(self, value):
        if value is not None:
            value = str(value)
        self._mechanicalReduction = value

    @property
    def hardwareInterfaces(self):
        """list of str : The supported hardware interfaces."""
        return self._hardwareInterfaces

    @hardwareInterfaces.setter
    def hardwareInterfaces(self, value):
        if value is None:
            value = []
        else:
            value = list(value)
            for i, v in enumerate(value):
                value[i] = str(v)
        self._hardwareInterfaces = value

    @classmethod
    def _from_xml(cls, node, path):
        kwargs = cls._parse(node, path)
        mr = node.find("mechanicalReduction")
        if mr is not None:
            mr = float(mr.text)
        kwargs["mechanicalReduction"] = mr
        hi = node.findall("hardwareInterface")
        if len(hi) > 0:
            hi = [h.text for h in hi]
        kwargs["hardwareInterfaces"] = hi
        return Actuator(**kwargs)

    def _to_xml(self, parent, path):
        node = self._unparse(path)
        if self.mechanicalReduction is not None:
            mr = ET.Element("mechanicalReduction")
            mr.text = str(self.mechanicalReduction)
            node.append(mr)
        if len(self.hardwareInterfaces) > 0:
            for hi in self.hardwareInterfaces:
                h = ET.Element("hardwareInterface")
                h.text = hi
                node.append(h)
        return node

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the visual with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.Actuator`
            A deep copy of the visual.
        """
        return Actuator(
            name="{}{}".format(prefix, self.name),
            mechanicalReduction=self.mechanicalReduction,
            hardwareInterfaces=self.hardwareInterfaces.copy(),
        )

hardwareInterfaces property writable

list of str : The supported hardware interfaces.

mechanicalReduction property writable

str : A specifier for the type of mechanical reduction.

name property writable

str : The name of this actuator.

copy(prefix='', scale=None)

Create a deep copy of the visual with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.Actuator A deep copy of the visual.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the visual with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.Actuator`
        A deep copy of the visual.
    """
    return Actuator(
        name="{}{}".format(prefix, self.name),
        mechanicalReduction=self.mechanicalReduction,
        hardwareInterfaces=self.hardwareInterfaces.copy(),
    )

Box

Bases: URDFType

A rectangular prism whose center is at the local origin.

Parameters

size : (3,) float The length, width, and height of the box in meters.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Box(URDFType):
    """A rectangular prism whose center is at the local origin.

    Parameters
    ----------
    size : (3,) float
        The length, width, and height of the box in meters.
    """

    _ATTRIBS = {"size": (np.ndarray, True)}
    _TAG = "box"

    def __init__(self, size):
        self.size = size
        self._meshes = []

    @property
    def size(self):
        """(3,) float : The length, width, and height of the box in meters."""
        return self._size

    @size.setter
    def size(self, value):
        self._size = np.asanyarray(value).astype(np.float64)
        self._meshes = []

    @property
    def meshes(self):
        """list of :class:`~trimesh.base.Trimesh` : The triangular meshes
        that represent this object.
        """
        if len(self._meshes) == 0:
            self._meshes = [trimesh.creation.box(extents=self.size)]
        return self._meshes

    def copy(self, prefix="", scale=None):
        """Create a deep copy with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all names.

        Returns
        -------
        :class:`.Box`
            A deep copy.
        """
        if scale is None:
            scale = 1.0
        b = Box(
            size=self.size.copy() * scale,
        )
        return b

meshes property

list of :class:~trimesh.base.Trimesh : The triangular meshes that represent this object.

size property writable

(3,) float : The length, width, and height of the box in meters.

copy(prefix='', scale=None)

Create a deep copy with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all names.

Returns

:class:.Box A deep copy.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all names.

    Returns
    -------
    :class:`.Box`
        A deep copy.
    """
    if scale is None:
        scale = 1.0
    b = Box(
        size=self.size.copy() * scale,
    )
    return b

Collision

Bases: URDFType

Collision properties of a link.

Parameters

geometry : :class:.Geometry The geometry of the element name : str, optional The name of the collision geometry. origin : (4,4) float, optional The pose of the collision element relative to the link frame. Defaults to identity.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Collision(URDFType):
    """Collision properties of a link.

    Parameters
    ----------
    geometry : :class:`.Geometry`
        The geometry of the element
    name : str, optional
        The name of the collision geometry.
    origin : (4,4) float, optional
        The pose of the collision element relative to the link frame.
        Defaults to identity.
    """

    _ATTRIBS = {"name": (str, False)}
    _ELEMENTS = {
        "geometry": (Geometry, True, False),
    }
    _TAG = "collision"

    def __init__(self, name, origin, geometry):
        self.geometry = geometry
        self.name = name
        self.origin = origin

    @property
    def geometry(self):
        """:class:`.Geometry` : The geometry of this element."""
        return self._geometry

    @geometry.setter
    def geometry(self, value):
        if not isinstance(value, Geometry):
            raise TypeError("Must set geometry with Geometry object")
        self._geometry = value

    @property
    def name(self):
        """str : The name of this collision element."""
        return self._name

    @name.setter
    def name(self, value):
        if value is not None:
            value = str(value)
        self._name = value

    @property
    def origin(self):
        """(4,4) float : The pose of this element relative to the link frame."""
        return self._origin

    @origin.setter
    def origin(self, value):
        self._origin = configure_origin(value)

    @classmethod
    def _from_xml(cls, node, path):
        kwargs = cls._parse(node, path)
        kwargs["origin"] = parse_origin(node)
        return Collision(**kwargs)

    def _to_xml(self, parent, path):
        node = self._unparse(path)
        node.append(unparse_origin(self.origin))
        return node

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the visual with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.Visual`
            A deep copy of the visual.
        """
        origin = self.origin.copy()
        if scale is not None:
            if not isinstance(scale, (list, np.ndarray)):
                scale = np.repeat(scale, 3)
            origin[:3, 3] *= scale
        return Collision(
            name="{}{}".format(prefix, self.name),
            origin=origin,
            geometry=self.geometry.copy(prefix=prefix, scale=scale),
        )

geometry property writable

:class:.Geometry : The geometry of this element.

name property writable

str : The name of this collision element.

origin property writable

(4,4) float : The pose of this element relative to the link frame.

copy(prefix='', scale=None)

Create a deep copy of the visual with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.Visual A deep copy of the visual.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the visual with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.Visual`
        A deep copy of the visual.
    """
    origin = self.origin.copy()
    if scale is not None:
        if not isinstance(scale, (list, np.ndarray)):
            scale = np.repeat(scale, 3)
        origin[:3, 3] *= scale
    return Collision(
        name="{}{}".format(prefix, self.name),
        origin=origin,
        geometry=self.geometry.copy(prefix=prefix, scale=scale),
    )

Cylinder

Bases: URDFType

A cylinder whose center is at the local origin.

Parameters

radius : float The radius of the cylinder in meters. length : float The length of the cylinder in meters.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Cylinder(URDFType):
    """A cylinder whose center is at the local origin.

    Parameters
    ----------
    radius : float
        The radius of the cylinder in meters.
    length : float
        The length of the cylinder in meters.
    """

    _ATTRIBS = {
        "radius": (float, True),
        "length": (float, True),
    }
    _TAG = "cylinder"

    def __init__(self, radius, length):
        self.radius = radius
        self.length = length
        self._meshes = []

    @property
    def radius(self):
        """float : The radius of the cylinder in meters."""
        return self._radius

    @radius.setter
    def radius(self, value):
        self._radius = float(value)
        self._meshes = []

    @property
    def length(self):
        """float : The length of the cylinder in meters."""
        return self._length

    @length.setter
    def length(self, value):
        self._length = float(value)
        self._meshes = []

    @property
    def meshes(self):
        """list of :class:`~trimesh.base.Trimesh` : The triangular meshes
        that represent this object.
        """
        if len(self._meshes) == 0:
            self._meshes = [trimesh.creation.cylinder(radius=self.radius, height=self.length)]
        return self._meshes

    def copy(self, prefix="", scale=None):
        """Create a deep copy with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all names.

        Returns
        -------
        :class:`.Cylinder`
            A deep copy.
        """
        if scale is None:
            scale = 1.0
        if isinstance(scale, (list, np.ndarray)):
            if scale[0] != scale[1]:
                raise ValueError("Cannot rescale cylinder geometry with asymmetry in x/y")
            c = Cylinder(
                radius=self.radius * scale[0],
                length=self.length * scale[2],
            )
        else:
            c = Cylinder(
                radius=self.radius * scale,
                length=self.length * scale,
            )
        return c

length property writable

float : The length of the cylinder in meters.

meshes property

list of :class:~trimesh.base.Trimesh : The triangular meshes that represent this object.

radius property writable

float : The radius of the cylinder in meters.

copy(prefix='', scale=None)

Create a deep copy with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all names.

Returns

:class:.Cylinder A deep copy.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all names.

    Returns
    -------
    :class:`.Cylinder`
        A deep copy.
    """
    if scale is None:
        scale = 1.0
    if isinstance(scale, (list, np.ndarray)):
        if scale[0] != scale[1]:
            raise ValueError("Cannot rescale cylinder geometry with asymmetry in x/y")
        c = Cylinder(
            radius=self.radius * scale[0],
            length=self.length * scale[2],
        )
    else:
        c = Cylinder(
            radius=self.radius * scale,
            length=self.length * scale,
        )
    return c

Geometry

Bases: URDFType

A wrapper for all geometry types.

Only one of the following values can be set, all others should be set to None.

Parameters

box : :class:.Box, optional Box geometry. cylinder : :class:.Cylinder Cylindrical geometry. sphere : :class:.Sphere Spherical geometry. mesh : :class:.Mesh Mesh geometry.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Geometry(URDFType):
    """A wrapper for all geometry types.

    Only one of the following values can be set, all others should be set
    to ``None``.

    Parameters
    ----------
    box : :class:`.Box`, optional
        Box geometry.
    cylinder : :class:`.Cylinder`
        Cylindrical geometry.
    sphere : :class:`.Sphere`
        Spherical geometry.
    mesh : :class:`.Mesh`
        Mesh geometry.
    """

    _ELEMENTS = {
        "box": (Box, False, False),
        "cylinder": (Cylinder, False, False),
        "sphere": (Sphere, False, False),
        "mesh": (Mesh, False, False),
    }
    _TAG = "geometry"

    def __init__(self, box=None, cylinder=None, sphere=None, mesh=None):
        if box is None and cylinder is None and sphere is None and mesh is None:
            raise ValueError("At least one geometry element must be set")
        self.box = box
        self.cylinder = cylinder
        self.sphere = sphere
        self.mesh = mesh

    @property
    def box(self):
        """:class:`.Box` : Box geometry."""
        return self._box

    @box.setter
    def box(self, value):
        if value is not None and not isinstance(value, Box):
            raise TypeError("Expected Box type")
        self._box = value

    @property
    def cylinder(self):
        """:class:`.Cylinder` : Cylinder geometry."""
        return self._cylinder

    @cylinder.setter
    def cylinder(self, value):
        if value is not None and not isinstance(value, Cylinder):
            raise TypeError("Expected Cylinder type")
        self._cylinder = value

    @property
    def sphere(self):
        """:class:`.Sphere` : Spherical geometry."""
        return self._sphere

    @sphere.setter
    def sphere(self, value):
        if value is not None and not isinstance(value, Sphere):
            raise TypeError("Expected Sphere type")
        self._sphere = value

    @property
    def mesh(self):
        """:class:`.Mesh` : Mesh geometry."""
        return self._mesh

    @mesh.setter
    def mesh(self, value):
        if value is not None and not isinstance(value, Mesh):
            raise TypeError("Expected Mesh type")
        self._mesh = value

    @property
    def geometry(self):
        """:class:`.Box`, :class:`.Cylinder`, :class:`.Sphere`, or
        :class:`.Mesh` : The valid geometry element.
        """
        if self.box is not None:
            return self.box
        if self.cylinder is not None:
            return self.cylinder
        if self.sphere is not None:
            return self.sphere
        if self.mesh is not None:
            return self.mesh
        return None

    @property
    def meshes(self):
        """list of :class:`~trimesh.base.Trimesh` : The geometry's triangular
        mesh representation(s).
        """
        return self.geometry.meshes

    def copy(self, prefix="", scale=None):
        """Create a deep copy with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all names.

        Returns
        -------
        :class:`.Geometry`
            A deep copy.
        """
        v = Geometry(
            box=(self.box.copy(prefix=prefix, scale=scale) if self.box else None),
            cylinder=(self.cylinder.copy(prefix=prefix, scale=scale) if self.cylinder else None),
            sphere=(self.sphere.copy(prefix=prefix, scale=scale) if self.sphere else None),
            mesh=(self.mesh.copy(prefix=prefix, scale=scale) if self.mesh else None),
        )
        return v

box property writable

:class:.Box : Box geometry.

cylinder property writable

:class:.Cylinder : Cylinder geometry.

geometry property

:class:.Box, :class:.Cylinder, :class:.Sphere, or :class:.Mesh : The valid geometry element.

mesh property writable

:class:.Mesh : Mesh geometry.

meshes property

list of :class:~trimesh.base.Trimesh : The geometry's triangular mesh representation(s).

sphere property writable

:class:.Sphere : Spherical geometry.

copy(prefix='', scale=None)

Create a deep copy with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all names.

Returns

:class:.Geometry A deep copy.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all names.

    Returns
    -------
    :class:`.Geometry`
        A deep copy.
    """
    v = Geometry(
        box=(self.box.copy(prefix=prefix, scale=scale) if self.box else None),
        cylinder=(self.cylinder.copy(prefix=prefix, scale=scale) if self.cylinder else None),
        sphere=(self.sphere.copy(prefix=prefix, scale=scale) if self.sphere else None),
        mesh=(self.mesh.copy(prefix=prefix, scale=scale) if self.mesh else None),
    )
    return v

Inertial

Bases: URDFType

The inertial properties of a link.

Parameters

mass : float The mass of the link in kilograms. inertia : (3,3) float The 3x3 symmetric rotational inertia matrix. origin : (4,4) float, optional The pose of the inertials relative to the link frame. Defaults to identity if not specified.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Inertial(URDFType):
    """The inertial properties of a link.

    Parameters
    ----------
    mass : float
        The mass of the link in kilograms.
    inertia : (3,3) float
        The 3x3 symmetric rotational inertia matrix.
    origin : (4,4) float, optional
        The pose of the inertials relative to the link frame.
        Defaults to identity if not specified.
    """

    _TAG = "inertial"

    def __init__(self, mass, inertia, origin=None):
        self.mass = mass
        self.inertia = inertia
        self.origin = origin

    @property
    def mass(self):
        """float : The mass of the link in kilograms."""
        return self._mass

    @mass.setter
    def mass(self, value):
        self._mass = float(value)

    @property
    def inertia(self):
        """(3,3) float : The 3x3 symmetric rotational inertia matrix."""
        return self._inertia

    @inertia.setter
    def inertia(self, value):
        value = np.asanyarray(value).astype(np.float64)
        if not np.allclose(value, value.T):
            raise ValueError("Inertia must be a symmetric matrix")
        self._inertia = value

    @property
    def origin(self):
        """(4,4) float : The pose of the inertials relative to the link frame."""
        return self._origin

    @origin.setter
    def origin(self, value):
        self._origin = configure_origin(value)

    @classmethod
    def _from_xml(cls, node, path):
        origin = parse_origin(node)
        mass = float(node.find("mass").attrib["value"])
        n = node.find("inertia")
        xx = float(n.attrib["ixx"])
        xy = float(n.attrib["ixy"])
        xz = float(n.attrib["ixz"])
        yy = float(n.attrib["iyy"])
        yz = float(n.attrib["iyz"])
        zz = float(n.attrib["izz"])
        inertia = np.array([[xx, xy, xz], [xy, yy, yz], [xz, yz, zz]], dtype=np.float64)
        return Inertial(mass=mass, inertia=inertia, origin=origin)

    def _to_xml(self, parent, path):
        node = ET.Element("inertial")
        node.append(unparse_origin(self.origin))
        mass = ET.Element("mass")
        mass.attrib["value"] = str(self.mass)
        node.append(mass)
        inertia = ET.Element("inertia")
        inertia.attrib["ixx"] = str(self.inertia[0, 0])
        inertia.attrib["ixy"] = str(self.inertia[0, 1])
        inertia.attrib["ixz"] = str(self.inertia[0, 2])
        inertia.attrib["iyy"] = str(self.inertia[1, 1])
        inertia.attrib["iyz"] = str(self.inertia[1, 2])
        inertia.attrib["izz"] = str(self.inertia[2, 2])
        node.append(inertia)
        return node

    def copy(self, prefix="", mass=None, origin=None, inertia=None):
        """Create a deep copy of the visual with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.Inertial`
            A deep copy of the visual.
        """
        if mass is None:
            mass = self.mass
        if origin is None:
            origin = self.origin.copy()
        if inertia is None:
            inertia = self.inertia.copy()
        return Inertial(
            mass=mass,
            inertia=inertia,
            origin=origin,
        )

inertia property writable

(3,3) float : The 3x3 symmetric rotational inertia matrix.

mass property writable

float : The mass of the link in kilograms.

origin property writable

(4,4) float : The pose of the inertials relative to the link frame.

copy(prefix='', mass=None, origin=None, inertia=None)

Create a deep copy of the visual with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.Inertial A deep copy of the visual.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", mass=None, origin=None, inertia=None):
    """Create a deep copy of the visual with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.Inertial`
        A deep copy of the visual.
    """
    if mass is None:
        mass = self.mass
    if origin is None:
        origin = self.origin.copy()
    if inertia is None:
        inertia = self.inertia.copy()
    return Inertial(
        mass=mass,
        inertia=inertia,
        origin=origin,
    )

Joint

Bases: URDFType

A connection between two links.

There are several types of joints, including:

  • fixed - a joint that cannot move.
  • prismatic - a joint that slides along the joint axis.
  • revolute - a hinge joint that rotates about the axis with a limited range of motion.
  • continuous - a hinge joint that rotates about the axis with an unlimited range of motion.
  • planar - a joint that moves in the plane orthogonal to the axis.
  • floating - a joint that can move in 6DoF.

Parameters

name : str The name of this joint. parent : str The name of the parent link of this joint. child : str The name of the child link of this joint. joint_type : str The type of the joint. Must be one of :obj:.Joint.TYPES. axis : (3,) float, optional The axis of the joint specified in joint frame. Defaults to [1,0,0]. origin : (4,4) float, optional The pose of the child link with respect to the parent link's frame. The joint frame is defined to be coincident with the child link's frame, so this is also the pose of the joint frame with respect to the parent link's frame. limit : :class:.JointLimit, optional Limit for the joint. Only required for revolute and prismatic joints. dynamics : :class:.JointDynamics, optional Dynamics for the joint. safety_controller : :class.SafetyController, optional The safety controller for this joint. calibration : :class:.JointCalibration, optional Calibration information for the joint. mimic : :class:JointMimic, optional Joint mimicry information.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
class Joint(URDFType):
    """A connection between two links.

    There are several types of joints, including:

    - ``fixed`` - a joint that cannot move.
    - ``prismatic`` - a joint that slides along the joint axis.
    - ``revolute`` - a hinge joint that rotates about the axis with a limited
      range of motion.
    - ``continuous`` - a hinge joint that rotates about the axis with an
      unlimited range of motion.
    - ``planar`` - a joint that moves in the plane orthogonal to the axis.
    - ``floating`` - a joint that can move in 6DoF.

    Parameters
    ----------
    name : str
        The name of this joint.
    parent : str
        The name of the parent link of this joint.
    child : str
        The name of the child link of this joint.
    joint_type : str
        The type of the joint. Must be one of :obj:`.Joint.TYPES`.
    axis : (3,) float, optional
        The axis of the joint specified in joint frame. Defaults to
        ``[1,0,0]``.
    origin : (4,4) float, optional
        The pose of the child link with respect to the parent link's frame.
        The joint frame is defined to be coincident with the child link's
        frame, so this is also the pose of the joint frame with respect to
        the parent link's frame.
    limit : :class:`.JointLimit`, optional
        Limit for the joint. Only required for revolute and prismatic
        joints.
    dynamics : :class:`.JointDynamics`, optional
        Dynamics for the joint.
    safety_controller : :class`.SafetyController`, optional
        The safety controller for this joint.
    calibration : :class:`.JointCalibration`, optional
        Calibration information for the joint.
    mimic : :class:`JointMimic`, optional
        Joint mimicry information.
    """

    TYPES = ["fixed", "prismatic", "revolute", "continuous", "floating", "planar"]
    _ATTRIBS = {
        "name": (str, True),
    }
    _ELEMENTS = {
        "dynamics": (JointDynamics, False, False),
        "limit": (JointLimit, False, False),
        "mimic": (JointMimic, False, False),
        "safety_controller": (SafetyController, False, False),
        "calibration": (JointCalibration, False, False),
    }
    _TAG = "joint"

    def __init__(
        self,
        name,
        joint_type,
        parent,
        child,
        axis=None,
        origin=None,
        limit=None,
        dynamics=None,
        safety_controller=None,
        calibration=None,
        mimic=None,
    ):
        self.name = name
        self.parent = parent
        self.child = child
        self.joint_type = joint_type
        self.axis = axis
        self.origin = origin
        self.limit = limit
        self.dynamics = dynamics
        self.safety_controller = safety_controller
        self.calibration = calibration
        self.mimic = mimic

    @property
    def name(self):
        """str : Name for this joint."""
        return self._name

    @name.setter
    def name(self, value):
        self._name = str(value)

    @property
    def joint_type(self):
        """str : The type of this joint."""
        return self._joint_type

    @joint_type.setter
    def joint_type(self, value):
        value = str(value)
        if value not in Joint.TYPES:
            raise ValueError("Unsupported joint type {}".format(value))
        self._joint_type = value

    @property
    def parent(self):
        """str : The name of the parent link."""
        return self._parent

    @parent.setter
    def parent(self, value):
        self._parent = str(value)

    @property
    def child(self):
        """str : The name of the child link."""
        return self._child

    @child.setter
    def child(self, value):
        self._child = str(value)

    @property
    def axis(self):
        """(3,) float : The joint axis in the joint frame."""
        return self._axis

    @axis.setter
    def axis(self, value):
        if value is None:
            value = np.array([1.0, 0.0, 0.0], dtype=np.float64)
        elif np.linalg.norm(value) < 1e-4:
            value = np.array([1.0, 0.0, 0.0], dtype=np.float64)
        else:
            value = np.asanyarray(value, dtype=np.float64)
            if value.shape != (3,):
                raise ValueError("Invalid shape for axis, should be (3,)")
            value = value / np.linalg.norm(value)
        self._axis = value

    @property
    def origin(self):
        """(4,4) float : The pose of child and joint frames relative to the
        parent link's frame.
        """
        return self._origin

    @origin.setter
    def origin(self, value):
        self._origin = configure_origin(value)

    @property
    def limit(self):
        """:class:`.JointLimit` : The limits for this joint."""
        return self._limit

    @limit.setter
    def limit(self, value):
        if value is None:
            if self.joint_type in ["prismatic", "revolute"]:
                raise ValueError("Require joint limit for prismatic and revolute joints")
        elif not isinstance(value, JointLimit):
            raise TypeError("Expected JointLimit type")
        self._limit = value

    @property
    def dynamics(self):
        """:class:`.JointDynamics` : The dynamics for this joint."""
        return self._dynamics

    @dynamics.setter
    def dynamics(self, value):
        if value is not None:
            if not isinstance(value, JointDynamics):
                raise TypeError("Expected JointDynamics type")
        self._dynamics = value

    @property
    def safety_controller(self):
        """:class:`.SafetyController` : The safety controller for this joint."""
        return self._safety_controller

    @safety_controller.setter
    def safety_controller(self, value):
        if value is not None:
            if not isinstance(value, SafetyController):
                raise TypeError("Expected SafetyController type")
        self._safety_controller = value

    @property
    def calibration(self):
        """:class:`.JointCalibration` : The calibration for this joint."""
        return self._calibration

    @calibration.setter
    def calibration(self, value):
        if value is not None:
            if not isinstance(value, JointCalibration):
                raise TypeError("Expected JointCalibration type")
        self._calibration = value

    @property
    def mimic(self):
        """:class:`.JointMimic` : The mimic for this joint."""
        return self._mimic

    @mimic.setter
    def mimic(self, value):
        if value is not None:
            if not isinstance(value, JointMimic):
                raise TypeError("Expected JointMimic type")
        self._mimic = value

    def is_valid(self, cfg):
        """Check if the provided configuration value is valid for this joint.

        Parameters
        ----------
        cfg : float, (2,) float, (6,) float, or (4,4) float
            The configuration of the joint.

        Returns
        -------
        is_valid : bool
            True if the configuration is valid, and False otherwise.
        """
        if self.joint_type not in ["fixed", "revolute"]:
            return True
        if self.joint_limit is None:
            return True
        cfg = float(cfg)
        lower = -np.infty
        upper = np.infty
        if self.limit.lower is not None:
            lower = self.limit.lower
        if self.limit.upper is not None:
            upper = self.limit.upper
        return cfg >= lower and cfg <= upper

    def get_child_pose(self, cfg=None):
        """Computes the child pose relative to a parent pose for a given
        configuration value.

        Parameters
        ----------
        cfg : float, (2,) float, (6,) float, or (4,4) float
            The configuration values for this joint. They are interpreted
            based on the joint type as follows:

            - ``fixed`` - not used.
            - ``prismatic`` - a translation along the axis in meters.
            - ``revolute`` - a rotation about the axis in radians.
            - ``continuous`` - a rotation about the axis in radians.
            - ``planar`` - the x and y translation values in the plane.
            - ``floating`` - the xyz values followed by the rpy values,
              or a (4,4) matrix.

            If ``cfg`` is ``None``, then this just returns the joint pose.

        Returns
        -------
        pose : (4,4) float
            The pose of the child relative to the parent.
        """
        if cfg is None:
            return self.origin
        elif self.joint_type == "fixed":
            return self.origin
        elif self.joint_type in ["revolute", "continuous"]:
            if cfg is None:
                cfg = 0.0
            else:
                cfg = float(cfg)
            R = trimesh.transformations.rotation_matrix(cfg, self.axis)
            return self.origin.dot(R)
        elif self.joint_type == "prismatic":
            if cfg is None:
                cfg = 0.0
            else:
                cfg = float(cfg)
            translation = np.eye(4, dtype=np.float64)
            translation[:3, 3] = self.axis * cfg
            return self.origin.dot(translation)
        elif self.joint_type == "planar":
            if cfg is None:
                cfg = np.zeros(2, dtype=np.float64)
            else:
                cfg = np.asanyarray(cfg, dtype=np.float64)
            if cfg.shape != (2,):
                raise ValueError("(2,) float configuration required for planar joints")
            translation = np.eye(4, dtype=np.float64)
            translation[:3, 3] = self.origin[:3, :2].dot(cfg)
            return self.origin.dot(translation)
        elif self.joint_type == "floating":
            if cfg is None:
                cfg = np.zeros(6, dtype=np.float64)
            else:
                cfg = configure_origin(cfg)
            if cfg is None:
                raise ValueError("Invalid configuration for floating joint")
            return self.origin.dot(cfg)
        else:
            raise ValueError("Invalid configuration")

    def get_child_poses(self, cfg, n_cfgs):
        """Computes the child pose relative to a parent pose for a given set of
        configuration values.

        Parameters
        ----------
        cfg : (n,) float or None
            The configuration values for this joint. They are interpreted
            based on the joint type as follows:

            - ``fixed`` - not used.
            - ``prismatic`` - a translation along the axis in meters.
            - ``revolute`` - a rotation about the axis in radians.
            - ``continuous`` - a rotation about the axis in radians.
            - ``planar`` - Not implemented.
            - ``floating`` - Not implemented.

            If ``cfg`` is ``None``, then this just returns the joint pose.

        Returns
        -------
        poses : (n,4,4) float
            The poses of the child relative to the parent.
        """
        if cfg is None:
            return np.tile(self.origin, (n_cfgs, 1, 1))
        elif self.joint_type == "fixed":
            return np.tile(self.origin, (n_cfgs, 1, 1))
        elif self.joint_type in ["revolute", "continuous"]:
            if cfg is None:
                cfg = np.zeros(n_cfgs)
            return np.matmul(self.origin, self._rotation_matrices(cfg, self.axis))
        elif self.joint_type == "prismatic":
            if cfg is None:
                cfg = np.zeros(n_cfgs)
            translation = np.tile(np.eye(4), (n_cfgs, 1, 1))
            translation[:, :3, 3] = self.axis * cfg[:, np.newaxis]
            return np.matmul(self.origin, translation)
        elif self.joint_type == "planar":
            raise NotImplementedError()
        elif self.joint_type == "floating":
            raise NotImplementedError()
        else:
            raise ValueError("Invalid configuration")

    @classmethod
    def _from_xml(cls, node, path):
        kwargs = cls._parse(node, path)
        kwargs["joint_type"] = str(node.attrib["type"])
        kwargs["parent"] = node.find("parent").attrib["link"]
        kwargs["child"] = node.find("child").attrib["link"]
        axis = node.find("axis")
        if axis is not None:
            axis = np.fromstring(axis.attrib["xyz"], sep=" ")
        kwargs["axis"] = axis
        kwargs["origin"] = parse_origin(node)
        return Joint(**kwargs)

    def _to_xml(self, parent, path):
        node = self._unparse(path)
        parent = ET.Element("parent")
        parent.attrib["link"] = self.parent
        node.append(parent)
        child = ET.Element("child")
        child.attrib["link"] = self.child
        node.append(child)
        if self.axis is not None:
            axis = ET.Element("axis")
            axis.attrib["xyz"] = np.array2string(self.axis)[1:-1]
            node.append(axis)
        node.append(unparse_origin(self.origin))
        node.attrib["type"] = self.joint_type
        return node

    def _rotation_matrices(self, angles, axis):
        """Compute rotation matrices from angle/axis representations.

        Parameters
        ----------
        angles : (n,) float
            The angles.
        axis : (3,) float
            The axis.

        Returns
        -------
        rots : (n,4,4)
            The rotation matrices
        """
        axis = axis / np.linalg.norm(axis)
        sina = np.sin(angles)
        cosa = np.cos(angles)
        M = np.tile(np.eye(4), (len(angles), 1, 1))
        M[:, 0, 0] = cosa
        M[:, 1, 1] = cosa
        M[:, 2, 2] = cosa
        M[:, :3, :3] += np.tile(np.outer(axis, axis), (len(angles), 1, 1)) * (1.0 - cosa)[:, np.newaxis, np.newaxis]
        M[:, :3, :3] += (
            np.tile(
                np.array([[0.0, -axis[2], axis[1]], [axis[2], 0.0, -axis[0]], [-axis[1], axis[0], 0.0]]),
                (len(angles), 1, 1),
            )
            * sina[:, np.newaxis, np.newaxis]
        )
        return M

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the joint with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.Joint`
            A deep copy of the joint.
        """
        origin = self.origin.copy()
        if scale is not None:
            if not isinstance(scale, (list, np.ndarray)):
                scale = np.repeat(scale, 3)
            origin[:3, 3] *= scale
        cpy = Joint(
            name="{}{}".format(prefix, self.name),
            joint_type=self.joint_type,
            parent="{}{}".format(prefix, self.parent),
            child="{}{}".format(prefix, self.child),
            axis=self.axis.copy(),
            origin=origin,
            limit=(self.limit.copy(prefix, scale) if self.limit else None),
            dynamics=(self.dynamics.copy(prefix, scale) if self.dynamics else None),
            safety_controller=(self.safety_controller.copy(prefix, scale) if self.safety_controller else None),
            calibration=(self.calibration.copy(prefix, scale) if self.calibration else None),
            mimic=(self.mimic.copy(prefix=prefix, scale=scale) if self.mimic else None),
        )
        return cpy

axis property writable

(3,) float : The joint axis in the joint frame.

calibration property writable

:class:.JointCalibration : The calibration for this joint.

child property writable

str : The name of the child link.

dynamics property writable

:class:.JointDynamics : The dynamics for this joint.

joint_type property writable

str : The type of this joint.

limit property writable

:class:.JointLimit : The limits for this joint.

mimic property writable

:class:.JointMimic : The mimic for this joint.

name property writable

str : Name for this joint.

origin property writable

(4,4) float : The pose of child and joint frames relative to the parent link's frame.

parent property writable

str : The name of the parent link.

safety_controller property writable

:class:.SafetyController : The safety controller for this joint.

copy(prefix='', scale=None)

Create a deep copy of the joint with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.Joint A deep copy of the joint.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the joint with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.Joint`
        A deep copy of the joint.
    """
    origin = self.origin.copy()
    if scale is not None:
        if not isinstance(scale, (list, np.ndarray)):
            scale = np.repeat(scale, 3)
        origin[:3, 3] *= scale
    cpy = Joint(
        name="{}{}".format(prefix, self.name),
        joint_type=self.joint_type,
        parent="{}{}".format(prefix, self.parent),
        child="{}{}".format(prefix, self.child),
        axis=self.axis.copy(),
        origin=origin,
        limit=(self.limit.copy(prefix, scale) if self.limit else None),
        dynamics=(self.dynamics.copy(prefix, scale) if self.dynamics else None),
        safety_controller=(self.safety_controller.copy(prefix, scale) if self.safety_controller else None),
        calibration=(self.calibration.copy(prefix, scale) if self.calibration else None),
        mimic=(self.mimic.copy(prefix=prefix, scale=scale) if self.mimic else None),
    )
    return cpy

get_child_pose(cfg=None)

Computes the child pose relative to a parent pose for a given configuration value.

Parameters

cfg : float, (2,) float, (6,) float, or (4,4) float The configuration values for this joint. They are interpreted based on the joint type as follows:

- ``fixed`` - not used.
- ``prismatic`` - a translation along the axis in meters.
- ``revolute`` - a rotation about the axis in radians.
- ``continuous`` - a rotation about the axis in radians.
- ``planar`` - the x and y translation values in the plane.
- ``floating`` - the xyz values followed by the rpy values,
  or a (4,4) matrix.

If ``cfg`` is ``None``, then this just returns the joint pose.
Returns

pose : (4,4) float The pose of the child relative to the parent.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def get_child_pose(self, cfg=None):
    """Computes the child pose relative to a parent pose for a given
    configuration value.

    Parameters
    ----------
    cfg : float, (2,) float, (6,) float, or (4,4) float
        The configuration values for this joint. They are interpreted
        based on the joint type as follows:

        - ``fixed`` - not used.
        - ``prismatic`` - a translation along the axis in meters.
        - ``revolute`` - a rotation about the axis in radians.
        - ``continuous`` - a rotation about the axis in radians.
        - ``planar`` - the x and y translation values in the plane.
        - ``floating`` - the xyz values followed by the rpy values,
          or a (4,4) matrix.

        If ``cfg`` is ``None``, then this just returns the joint pose.

    Returns
    -------
    pose : (4,4) float
        The pose of the child relative to the parent.
    """
    if cfg is None:
        return self.origin
    elif self.joint_type == "fixed":
        return self.origin
    elif self.joint_type in ["revolute", "continuous"]:
        if cfg is None:
            cfg = 0.0
        else:
            cfg = float(cfg)
        R = trimesh.transformations.rotation_matrix(cfg, self.axis)
        return self.origin.dot(R)
    elif self.joint_type == "prismatic":
        if cfg is None:
            cfg = 0.0
        else:
            cfg = float(cfg)
        translation = np.eye(4, dtype=np.float64)
        translation[:3, 3] = self.axis * cfg
        return self.origin.dot(translation)
    elif self.joint_type == "planar":
        if cfg is None:
            cfg = np.zeros(2, dtype=np.float64)
        else:
            cfg = np.asanyarray(cfg, dtype=np.float64)
        if cfg.shape != (2,):
            raise ValueError("(2,) float configuration required for planar joints")
        translation = np.eye(4, dtype=np.float64)
        translation[:3, 3] = self.origin[:3, :2].dot(cfg)
        return self.origin.dot(translation)
    elif self.joint_type == "floating":
        if cfg is None:
            cfg = np.zeros(6, dtype=np.float64)
        else:
            cfg = configure_origin(cfg)
        if cfg is None:
            raise ValueError("Invalid configuration for floating joint")
        return self.origin.dot(cfg)
    else:
        raise ValueError("Invalid configuration")

get_child_poses(cfg, n_cfgs)

Computes the child pose relative to a parent pose for a given set of configuration values.

Parameters

cfg : (n,) float or None The configuration values for this joint. They are interpreted based on the joint type as follows:

- ``fixed`` - not used.
- ``prismatic`` - a translation along the axis in meters.
- ``revolute`` - a rotation about the axis in radians.
- ``continuous`` - a rotation about the axis in radians.
- ``planar`` - Not implemented.
- ``floating`` - Not implemented.

If ``cfg`` is ``None``, then this just returns the joint pose.
Returns

poses : (n,4,4) float The poses of the child relative to the parent.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def get_child_poses(self, cfg, n_cfgs):
    """Computes the child pose relative to a parent pose for a given set of
    configuration values.

    Parameters
    ----------
    cfg : (n,) float or None
        The configuration values for this joint. They are interpreted
        based on the joint type as follows:

        - ``fixed`` - not used.
        - ``prismatic`` - a translation along the axis in meters.
        - ``revolute`` - a rotation about the axis in radians.
        - ``continuous`` - a rotation about the axis in radians.
        - ``planar`` - Not implemented.
        - ``floating`` - Not implemented.

        If ``cfg`` is ``None``, then this just returns the joint pose.

    Returns
    -------
    poses : (n,4,4) float
        The poses of the child relative to the parent.
    """
    if cfg is None:
        return np.tile(self.origin, (n_cfgs, 1, 1))
    elif self.joint_type == "fixed":
        return np.tile(self.origin, (n_cfgs, 1, 1))
    elif self.joint_type in ["revolute", "continuous"]:
        if cfg is None:
            cfg = np.zeros(n_cfgs)
        return np.matmul(self.origin, self._rotation_matrices(cfg, self.axis))
    elif self.joint_type == "prismatic":
        if cfg is None:
            cfg = np.zeros(n_cfgs)
        translation = np.tile(np.eye(4), (n_cfgs, 1, 1))
        translation[:, :3, 3] = self.axis * cfg[:, np.newaxis]
        return np.matmul(self.origin, translation)
    elif self.joint_type == "planar":
        raise NotImplementedError()
    elif self.joint_type == "floating":
        raise NotImplementedError()
    else:
        raise ValueError("Invalid configuration")

is_valid(cfg)

Check if the provided configuration value is valid for this joint.

Parameters

cfg : float, (2,) float, (6,) float, or (4,4) float The configuration of the joint.

Returns

is_valid : bool True if the configuration is valid, and False otherwise.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def is_valid(self, cfg):
    """Check if the provided configuration value is valid for this joint.

    Parameters
    ----------
    cfg : float, (2,) float, (6,) float, or (4,4) float
        The configuration of the joint.

    Returns
    -------
    is_valid : bool
        True if the configuration is valid, and False otherwise.
    """
    if self.joint_type not in ["fixed", "revolute"]:
        return True
    if self.joint_limit is None:
        return True
    cfg = float(cfg)
    lower = -np.infty
    upper = np.infty
    if self.limit.lower is not None:
        lower = self.limit.lower
    if self.limit.upper is not None:
        upper = self.limit.upper
    return cfg >= lower and cfg <= upper

JointCalibration

Bases: URDFType

The reference positions of the joint.

Parameters

rising : float, optional When the joint moves in a positive direction, this position will trigger a rising edge. falling : When the joint moves in a positive direction, this position will trigger a falling edge.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class JointCalibration(URDFType):
    """The reference positions of the joint.

    Parameters
    ----------
    rising : float, optional
        When the joint moves in a positive direction, this position will
        trigger a rising edge.
    falling :
        When the joint moves in a positive direction, this position will
        trigger a falling edge.
    """

    _ATTRIBS = {"rising": (float, False), "falling": (float, False)}
    _TAG = "calibration"

    def __init__(self, rising=None, falling=None):
        self.rising = rising
        self.falling = falling

    @property
    def rising(self):
        """float : description."""
        return self._rising

    @rising.setter
    def rising(self, value):
        if value is not None:
            value = float(value)
        self._rising = value

    @property
    def falling(self):
        """float : description."""
        return self._falling

    @falling.setter
    def falling(self, value):
        if value is not None:
            value = float(value)
        self._falling = value

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the visual with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.JointCalibration`
            A deep copy of the visual.
        """
        return JointCalibration(
            rising=self.rising,
            falling=self.falling,
        )

falling property writable

float : description.

rising property writable

float : description.

copy(prefix='', scale=None)

Create a deep copy of the visual with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.JointCalibration A deep copy of the visual.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the visual with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.JointCalibration`
        A deep copy of the visual.
    """
    return JointCalibration(
        rising=self.rising,
        falling=self.falling,
    )

JointDynamics

Bases: URDFType

The dynamic properties of the joint.

Parameters

damping : float The damping value of the joint (Ns/m for prismatic joints, Nms/rad for revolute). friction : float The static friction value of the joint (N for prismatic joints, Nm for revolute).

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class JointDynamics(URDFType):
    """The dynamic properties of the joint.

    Parameters
    ----------
    damping : float
        The damping value of the joint (Ns/m for prismatic joints,
        Nms/rad for revolute).
    friction : float
        The static friction value of the joint (N for prismatic joints,
        Nm for revolute).
    """

    _ATTRIBS = {
        "damping": (float, False),
        "friction": (float, False),
    }
    _TAG = "dynamics"

    def __init__(self, damping, friction):
        self.damping = damping
        self.friction = friction

    @property
    def damping(self):
        """float : The damping value of the joint."""
        return self._damping

    @damping.setter
    def damping(self, value):
        if value is not None:
            value = float(value)
        self._damping = value

    @property
    def friction(self):
        """float : The static friction value of the joint."""
        return self._friction

    @friction.setter
    def friction(self, value):
        if value is not None:
            value = float(value)
        self._friction = value

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the visual with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.JointDynamics`
            A deep copy of the visual.
        """
        return JointDynamics(
            damping=self.damping,
            friction=self.friction,
        )

damping property writable

float : The damping value of the joint.

friction property writable

float : The static friction value of the joint.

copy(prefix='', scale=None)

Create a deep copy of the visual with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.JointDynamics A deep copy of the visual.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the visual with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.JointDynamics`
        A deep copy of the visual.
    """
    return JointDynamics(
        damping=self.damping,
        friction=self.friction,
    )

JointLimit

Bases: URDFType

The limits of the joint.

Parameters

effort : float The maximum joint effort (N for prismatic joints, Nm for revolute). velocity : float The maximum joint velocity (m/s for prismatic joints, rad/s for revolute). lower : float, optional The lower joint limit (m for prismatic joints, rad for revolute). upper : float, optional The upper joint limit (m for prismatic joints, rad for revolute).

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class JointLimit(URDFType):
    """The limits of the joint.

    Parameters
    ----------
    effort : float
        The maximum joint effort (N for prismatic joints, Nm for revolute).
    velocity : float
        The maximum joint velocity (m/s for prismatic joints, rad/s for
        revolute).
    lower : float, optional
        The lower joint limit (m for prismatic joints, rad for revolute).
    upper : float, optional
        The upper joint limit (m for prismatic joints, rad for revolute).
    """

    _ATTRIBS = {
        "effort": (float, False),
        "velocity": (float, False),
        "lower": (float, False),
        "upper": (float, False),
    }
    _TAG = "limit"

    def __init__(self, effort=None, velocity=None, lower=None, upper=None):
        self.effort = effort
        self.velocity = velocity
        self.lower = lower
        self.upper = upper

    @property
    def effort(self):
        """float : The maximum joint effort."""
        return self._effort

    @effort.setter
    def effort(self, value):
        self._effort = float(value) if value else 0.0

    @property
    def velocity(self):
        """float : The maximum joint velocity."""
        return self._velocity

    @velocity.setter
    def velocity(self, value):
        self._velocity = float(value) if value else 0.0

    @property
    def lower(self):
        """float : The lower joint limit."""
        return self._lower

    @lower.setter
    def lower(self, value):
        if value is not None:
            value = float(value)
        self._lower = value

    @property
    def upper(self):
        """float : The upper joint limit."""
        return self._upper

    @upper.setter
    def upper(self, value):
        if value is not None:
            value = float(value)
        self._upper = value

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the visual with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.JointLimit`
            A deep copy of the visual.
        """
        return JointLimit(
            effort=self.effort,
            velocity=self.velocity,
            lower=self.lower,
            upper=self.upper,
        )

effort property writable

float : The maximum joint effort.

lower property writable

float : The lower joint limit.

upper property writable

float : The upper joint limit.

velocity property writable

float : The maximum joint velocity.

copy(prefix='', scale=None)

Create a deep copy of the visual with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.JointLimit A deep copy of the visual.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the visual with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.JointLimit`
        A deep copy of the visual.
    """
    return JointLimit(
        effort=self.effort,
        velocity=self.velocity,
        lower=self.lower,
        upper=self.upper,
    )

JointMimic

Bases: URDFType

A mimicry tag for a joint, which forces its configuration to mimic another joint's.

This joint's configuration value is set equal to multiplier * other_joint_cfg + offset.

Parameters

joint : str The name of the joint to mimic. multiplier : float The joint configuration multiplier. Defaults to 1.0. offset : float, optional The joint configuration offset. Defaults to 0.0.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class JointMimic(URDFType):
    """A mimicry tag for a joint, which forces its configuration to
    mimic another joint's.

    This joint's configuration value is set equal to
    ``multiplier * other_joint_cfg + offset``.

    Parameters
    ----------
    joint : str
        The name of the joint to mimic.
    multiplier : float
        The joint configuration multiplier. Defaults to 1.0.
    offset : float, optional
        The joint configuration offset. Defaults to 0.0.
    """

    _ATTRIBS = {
        "joint": (str, True),
        "multiplier": (float, False),
        "offset": (float, False),
    }
    _TAG = "mimic"

    def __init__(self, joint, multiplier=None, offset=None):
        self.joint = joint
        self.multiplier = multiplier
        self.offset = offset

    @property
    def joint(self):
        """float : The name of the joint to mimic."""
        return self._joint

    @joint.setter
    def joint(self, value):
        self._joint = str(value)

    @property
    def multiplier(self):
        """float : The multiplier for the joint configuration."""
        return self._multiplier

    @multiplier.setter
    def multiplier(self, value):
        if value is not None:
            value = float(value)
        else:
            value = 1.0
        self._multiplier = value

    @property
    def offset(self):
        """float : The offset for the joint configuration"""
        return self._offset

    @offset.setter
    def offset(self, value):
        if value is not None:
            value = float(value)
        else:
            value = 0.0
        self._offset = value

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the joint mimic with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.JointMimic`
            A deep copy of the joint mimic.
        """
        return JointMimic(joint="{}{}".format(prefix, self.joint), multiplier=self.multiplier, offset=self.offset)

joint property writable

float : The name of the joint to mimic.

multiplier property writable

float : The multiplier for the joint configuration.

offset property writable

float : The offset for the joint configuration

copy(prefix='', scale=None)

Create a deep copy of the joint mimic with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.JointMimic A deep copy of the joint mimic.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the joint mimic with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.JointMimic`
        A deep copy of the joint mimic.
    """
    return JointMimic(joint="{}{}".format(prefix, self.joint), multiplier=self.multiplier, offset=self.offset)

Bases: URDFType

A link of a rigid object.

name : str The name of the link. inertial : :class:.Inertial, optional The inertial properties of the link. visuals : list of :class:.Visual, optional The visual properties of the link. collsions : list of :class:.Collision, optional The collision properties of the link.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Link(URDFType):
    """A link of a rigid object.

    Parameters
    ----------
    name : str
        The name of the link.
    inertial : :class:`.Inertial`, optional
        The inertial properties of the link.
    visuals : list of :class:`.Visual`, optional
        The visual properties of the link.
    collsions : list of :class:`.Collision`, optional
        The collision properties of the link.
    """

    _ATTRIBS = {
        "name": (str, True),
    }
    _ELEMENTS = {
        "inertial": (Inertial, False, False),
        "visuals": (Visual, False, True),
        "collisions": (Collision, False, True),
    }
    _TAG = "link"

    def __init__(self, name, inertial, visuals, collisions):
        self.name = name
        self.inertial = inertial
        self.visuals = visuals
        self.collisions = collisions

        self._collision_mesh = None

    @property
    def name(self):
        """str : The name of this link."""
        return self._name

    @name.setter
    def name(self, value):
        self._name = str(value)

    @property
    def inertial(self):
        """:class:`.Inertial` : Inertial properties of the link."""
        return self._inertial

    @inertial.setter
    def inertial(self, value):
        if value is not None and not isinstance(value, Inertial):
            raise TypeError("Expected Inertial object")
        # Set default inertial
        if value is None:
            value = Inertial(mass=1.0, inertia=np.eye(3))
        self._inertial = value

    @property
    def visuals(self):
        """list of :class:`.Visual` : The visual properties of this link."""
        return self._visuals

    @visuals.setter
    def visuals(self, value):
        if value is None:
            value = []
        else:
            value = list(value)
            for v in value:
                if not isinstance(v, Visual):
                    raise ValueError("Expected list of Visual objects")
        self._visuals = value

    @property
    def collisions(self):
        """list of :class:`.Collision` : The collision properties of this link."""
        return self._collisions

    @collisions.setter
    def collisions(self, value):
        if value is None:
            value = []
        else:
            value = list(value)
            for v in value:
                if not isinstance(v, Collision):
                    raise ValueError("Expected list of Collision objects")
        self._collisions = value

    @property
    def collision_mesh(self):
        """:class:`~trimesh.base.Trimesh` : A single collision mesh for
        the link, specified in the link frame, or None if there isn't one.
        """
        if len(self.collisions) == 0:
            return None
        if self._collision_mesh is None:
            meshes = []
            for c in self.collisions:
                for m in c.geometry.meshes:
                    m = m.copy()
                    pose = c.origin
                    if c.geometry.mesh is not None:
                        if c.geometry.mesh.scale is not None:
                            S = np.eye(4)
                            S[:3, :3] = np.diag(c.geometry.mesh.scale)
                            pose = pose.dot(S)
                    m.apply_transform(pose)
                    meshes.append(m)
            if len(meshes) == 0:
                return None
            self._collision_mesh = meshes[0] + meshes[1:]
        return self._collision_mesh

    def copy(self, prefix="", scale=None, collision_only=False):
        """Create a deep copy of the link.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        link : :class:`.Link`
            A deep copy of the Link.
        """
        inertial = self.inertial.copy() if self.inertial is not None else None
        cm = self._collision_mesh
        if scale is not None:
            if self.collision_mesh is not None and self.inertial is not None:
                sm = np.eye(4)
                if not isinstance(scale, (list, np.ndarray)):
                    scale = np.repeat(scale, 3)
                sm[:3, :3] = np.diag(scale)
                cm = self.collision_mesh.copy()
                cm.density = self.inertial.mass / cm.volume
                cm.apply_transform(sm)
                cmm = np.eye(4)
                cmm[:3, 3] = cm.center_mass
                inertial = Inertial(mass=cm.mass, inertia=cm.moment_inertia, origin=cmm)

        visuals = None
        if not collision_only:
            visuals = [v.copy(prefix=prefix, scale=scale) for v in self.visuals]

        cpy = Link(
            name="{}{}".format(prefix, self.name),
            inertial=inertial,
            visuals=visuals,
            collisions=[v.copy(prefix=prefix, scale=scale) for v in self.collisions],
        )
        cpy._collision_mesh = cm
        return cpy

collision_mesh property

:class:~trimesh.base.Trimesh : A single collision mesh for the link, specified in the link frame, or None if there isn't one.

collisions property writable

list of :class:.Collision : The collision properties of this link.

inertial property writable

:class:.Inertial : Inertial properties of the link.

name property writable

str : The name of this link.

visuals property writable

list of :class:.Visual : The visual properties of this link.

copy(prefix='', scale=None, collision_only=False)

Create a deep copy of the link.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

link : :class:.Link A deep copy of the Link.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None, collision_only=False):
    """Create a deep copy of the link.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    link : :class:`.Link`
        A deep copy of the Link.
    """
    inertial = self.inertial.copy() if self.inertial is not None else None
    cm = self._collision_mesh
    if scale is not None:
        if self.collision_mesh is not None and self.inertial is not None:
            sm = np.eye(4)
            if not isinstance(scale, (list, np.ndarray)):
                scale = np.repeat(scale, 3)
            sm[:3, :3] = np.diag(scale)
            cm = self.collision_mesh.copy()
            cm.density = self.inertial.mass / cm.volume
            cm.apply_transform(sm)
            cmm = np.eye(4)
            cmm[:3, 3] = cm.center_mass
            inertial = Inertial(mass=cm.mass, inertia=cm.moment_inertia, origin=cmm)

    visuals = None
    if not collision_only:
        visuals = [v.copy(prefix=prefix, scale=scale) for v in self.visuals]

    cpy = Link(
        name="{}{}".format(prefix, self.name),
        inertial=inertial,
        visuals=visuals,
        collisions=[v.copy(prefix=prefix, scale=scale) for v in self.collisions],
    )
    cpy._collision_mesh = cm
    return cpy

Material

Bases: URDFType

A material for some geometry.

Parameters

name : str The name of the material. color : (4,) float, optional The RGBA color of the material in the range [0,1]. texture : :class:.Texture, optional A texture for the material.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Material(URDFType):
    """A material for some geometry.

    Parameters
    ----------
    name : str
        The name of the material.
    color : (4,) float, optional
        The RGBA color of the material in the range [0,1].
    texture : :class:`.Texture`, optional
        A texture for the material.
    """

    _ATTRIBS = {"name": (str, True)}
    _ELEMENTS = {
        "texture": (Texture, False, False),
    }
    _TAG = "material"

    def __init__(self, name, color=None, texture=None):
        self.name = name
        self.color = color
        self.texture = texture

    @property
    def name(self):
        """str : The name of the material."""
        return self._name

    @name.setter
    def name(self, value):
        self._name = str(value)

    @property
    def color(self):
        """(4,) float : The RGBA color of the material, in the range [0,1]."""
        return self._color

    @color.setter
    def color(self, value):
        if value is not None:
            value = np.asanyarray(value).astype(np.float64)
            value = np.clip(value, 0.0, 1.0)
            if value.shape != (4,):
                raise ValueError("Color must be a (4,) float")
        self._color = value

    @property
    def texture(self):
        """:class:`.Texture` : The texture for the material."""
        return self._texture

    @texture.setter
    def texture(self, value):
        if value is not None:
            if isinstance(value, six.string_types):
                image = PIL.Image.open(value)
                value = Texture(filename=value, image=image)
            elif not isinstance(value, Texture):
                raise ValueError("Invalid type for texture -- expect path to image or Texture")
        self._texture = value

    @classmethod
    def _from_xml(cls, node, path):
        kwargs = cls._parse(node, path)

        # Extract the color -- it's weirdly an attribute of a subelement
        color = node.find("color")
        if color is not None:
            color = np.fromstring(color.attrib["rgba"], sep=" ", dtype=np.float64)
        kwargs["color"] = color

        return Material(**kwargs)

    def _to_xml(self, parent, path):
        # Simplify materials by collecting them at the top level.

        # For top-level elements, save the full material specification
        if parent.tag == "robot":
            node = self._unparse(path)
            if self.color is not None:
                color = ET.Element("color")
                color.attrib["rgba"] = np.array2string(self.color)[1:-1]
                node.append(color)

        # For non-top-level elements just save the material with a name
        else:
            node = ET.Element("material")
            node.attrib["name"] = self.name
        return node

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the material with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.Material`
            A deep copy of the material.
        """
        return Material(name="{}{}".format(prefix, self.name), color=self.color, texture=self.texture)

color property writable

(4,) float : The RGBA color of the material, in the range [0,1].

name property writable

str : The name of the material.

texture property writable

:class:.Texture : The texture for the material.

copy(prefix='', scale=None)

Create a deep copy of the material with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.Material A deep copy of the material.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the material with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.Material`
        A deep copy of the material.
    """
    return Material(name="{}{}".format(prefix, self.name), color=self.color, texture=self.texture)

Mesh

Bases: URDFType

A triangular mesh object.

Parameters

filename : str The path to the mesh that contains this object. This can be relative to the top-level URDF or an absolute path. scale : (3,) float, optional The scaling value for the mesh along the XYZ axes. If None, assumes no scale is applied. meshes : list of :class:~trimesh.base.Trimesh A list of meshes that compose this mesh. The list of meshes is useful for visual geometries that might be composed of separate trimesh objects. If not specified, the mesh is loaded from the file using trimesh.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Mesh(URDFType):
    """A triangular mesh object.

    Parameters
    ----------
    filename : str
        The path to the mesh that contains this object. This can be
        relative to the top-level URDF or an absolute path.
    scale : (3,) float, optional
        The scaling value for the mesh along the XYZ axes.
        If ``None``, assumes no scale is applied.
    meshes : list of :class:`~trimesh.base.Trimesh`
        A list of meshes that compose this mesh.
        The list of meshes is useful for visual geometries that
        might be composed of separate trimesh objects.
        If not specified, the mesh is loaded from the file using trimesh.
    """

    _ATTRIBS = {"filename": (str, True), "scale": (np.ndarray, False)}
    _TAG = "mesh"

    def __init__(self, filename, scale=None, meshes=None):
        if meshes is None:
            meshes = load_meshes(filename)
        self.filename = filename
        self.scale = scale
        self.meshes = meshes

    @property
    def filename(self):
        """str : The path to the mesh file for this object."""
        return self._filename

    @filename.setter
    def filename(self, value):
        self._filename = value

    @property
    def scale(self):
        """(3,) float : A scaling for the mesh along its local XYZ axes."""
        return self._scale

    @scale.setter
    def scale(self, value):
        if value is not None:
            value = np.asanyarray(value).astype(np.float64)
        self._scale = value

    @property
    def meshes(self):
        """list of :class:`~trimesh.base.Trimesh` : The triangular meshes
        that represent this object.
        """
        return self._meshes

    @meshes.setter
    def meshes(self, value):
        if isinstance(value, six.string_types):
            value = load_meshes(value)
        elif isinstance(value, (list, tuple, set, np.ndarray)):
            value = list(value)
            if len(value) == 0:
                raise ValueError("Mesh must have at least one trimesh.Trimesh")
            for m in value:
                if not isinstance(m, trimesh.Trimesh):
                    raise TypeError("Mesh requires a trimesh.Trimesh or a list of them")
        elif isinstance(value, trimesh.Trimesh):
            value = [value]
        else:
            raise TypeError("Mesh requires a trimesh.Trimesh")
        self._meshes = value

    @classmethod
    def _from_xml(cls, node, path):
        kwargs = cls._parse(node, path)

        # Load the mesh, combining collision geometry meshes but keeping
        # visual ones separate to preserve colors and textures
        fn = get_filename(path, kwargs["filename"])
        combine = node.getparent().getparent().tag == Collision._TAG
        meshes = load_meshes(fn)
        if combine:
            # Delete visuals for simplicity
            for m in meshes:
                m.visual = trimesh.visual.ColorVisuals(mesh=m)
            meshes = [meshes[0] + meshes[1:]]
        kwargs["meshes"] = meshes

        return Mesh(**kwargs)

    def _to_xml(self, parent, path):
        # Get the filename
        fn = get_filename(path, self.filename, makedirs=True)

        # Export the meshes as a single file
        meshes = self.meshes
        if len(meshes) == 1:
            meshes = meshes[0]
        elif os.path.splitext(fn)[1] == ".glb":
            meshes = trimesh.scene.Scene(geometry=meshes)
        trimesh.exchange.export.export_mesh(meshes, fn)

        # Unparse the node
        node = self._unparse(path)
        return node

    def copy(self, prefix="", scale=None):
        """Create a deep copy with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all names.

        Returns
        -------
        :class:`.Sphere`
            A deep copy.
        """
        meshes = [m.copy() for m in self.meshes]
        if scale is not None:
            sm = np.eye(4)
            if isinstance(scale, (list, np.ndarray)):
                sm[:3, :3] = np.diag(scale)
            else:
                sm[:3, :3] = np.diag(np.repeat(scale, 3))
            for i, m in enumerate(meshes):
                meshes[i] = m.apply_transform(sm)
        base, fn = os.path.split(self.filename)
        fn = "{}{}".format(prefix, self.filename)
        m = Mesh(
            filename=os.path.join(base, fn),
            scale=(self.scale.copy() if self.scale is not None else None),
            meshes=meshes,
        )
        return m

filename property writable

str : The path to the mesh file for this object.

meshes property writable

list of :class:~trimesh.base.Trimesh : The triangular meshes that represent this object.

scale property writable

(3,) float : A scaling for the mesh along its local XYZ axes.

copy(prefix='', scale=None)

Create a deep copy with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all names.

Returns

:class:.Sphere A deep copy.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all names.

    Returns
    -------
    :class:`.Sphere`
        A deep copy.
    """
    meshes = [m.copy() for m in self.meshes]
    if scale is not None:
        sm = np.eye(4)
        if isinstance(scale, (list, np.ndarray)):
            sm[:3, :3] = np.diag(scale)
        else:
            sm[:3, :3] = np.diag(np.repeat(scale, 3))
        for i, m in enumerate(meshes):
            meshes[i] = m.apply_transform(sm)
    base, fn = os.path.split(self.filename)
    fn = "{}{}".format(prefix, self.filename)
    m = Mesh(
        filename=os.path.join(base, fn),
        scale=(self.scale.copy() if self.scale is not None else None),
        meshes=meshes,
    )
    return m

SafetyController

Bases: URDFType

A controller for joint movement safety.

Parameters

k_velocity : float An attribute specifying the relation between the effort and velocity limits. k_position : float, optional An attribute specifying the relation between the position and velocity limits. Defaults to 0.0. soft_lower_limit : float, optional The lower joint boundary where the safety controller kicks in. Defaults to 0.0. soft_upper_limit : float, optional The upper joint boundary where the safety controller kicks in. Defaults to 0.0.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class SafetyController(URDFType):
    """A controller for joint movement safety.

    Parameters
    ----------
    k_velocity : float
        An attribute specifying the relation between the effort and velocity
        limits.
    k_position : float, optional
        An attribute specifying the relation between the position and velocity
        limits. Defaults to 0.0.
    soft_lower_limit : float, optional
        The lower joint boundary where the safety controller kicks in.
        Defaults to 0.0.
    soft_upper_limit : float, optional
        The upper joint boundary where the safety controller kicks in.
        Defaults to 0.0.
    """

    _ATTRIBS = {
        "k_velocity": (float, True),
        "k_position": (float, False),
        "soft_lower_limit": (float, False),
        "soft_upper_limit": (float, False),
    }
    _TAG = "safety_controller"

    def __init__(self, k_velocity, k_position=None, soft_lower_limit=None, soft_upper_limit=None):
        self.k_velocity = k_velocity
        self.k_position = k_position
        self.soft_lower_limit = soft_lower_limit
        self.soft_upper_limit = soft_upper_limit

    @property
    def soft_lower_limit(self):
        """float : The soft lower limit where the safety controller kicks in."""
        return self._soft_lower_limit

    @soft_lower_limit.setter
    def soft_lower_limit(self, value):
        if value is not None:
            value = float(value)
        else:
            value = 0.0
        self._soft_lower_limit = value

    @property
    def soft_upper_limit(self):
        """float : The soft upper limit where the safety controller kicks in."""
        return self._soft_upper_limit

    @soft_upper_limit.setter
    def soft_upper_limit(self, value):
        if value is not None:
            value = float(value)
        else:
            value = 0.0
        self._soft_upper_limit = value

    @property
    def k_position(self):
        """float : A relation between the position and velocity limits."""
        return self._k_position

    @k_position.setter
    def k_position(self, value):
        if value is not None:
            value = float(value)
        else:
            value = 0.0
        self._k_position = value

    @property
    def k_velocity(self):
        """float : A relation between the effort and velocity limits."""
        return self._k_velocity

    @k_velocity.setter
    def k_velocity(self, value):
        self._k_velocity = float(value)

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the visual with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.SafetyController`
            A deep copy of the visual.
        """
        return SafetyController(
            k_velocity=self.k_velocity,
            k_position=self.k_position,
            soft_lower_limit=self.soft_lower_limit,
            soft_upper_limit=self.soft_upper_limit,
        )

k_position property writable

float : A relation between the position and velocity limits.

k_velocity property writable

float : A relation between the effort and velocity limits.

soft_lower_limit property writable

float : The soft lower limit where the safety controller kicks in.

soft_upper_limit property writable

float : The soft upper limit where the safety controller kicks in.

copy(prefix='', scale=None)

Create a deep copy of the visual with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.SafetyController A deep copy of the visual.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the visual with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.SafetyController`
        A deep copy of the visual.
    """
    return SafetyController(
        k_velocity=self.k_velocity,
        k_position=self.k_position,
        soft_lower_limit=self.soft_lower_limit,
        soft_upper_limit=self.soft_upper_limit,
    )

Sphere

Bases: URDFType

A sphere whose center is at the local origin.

Parameters

radius : float The radius of the sphere in meters.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Sphere(URDFType):
    """A sphere whose center is at the local origin.

    Parameters
    ----------
    radius : float
        The radius of the sphere in meters.
    """

    _ATTRIBS = {
        "radius": (float, True),
    }
    _TAG = "sphere"

    def __init__(self, radius):
        self.radius = radius
        self._meshes = []

    @property
    def radius(self):
        """float : The radius of the sphere in meters."""
        return self._radius

    @radius.setter
    def radius(self, value):
        self._radius = float(value)
        self._meshes = []

    @property
    def meshes(self):
        """list of :class:`~trimesh.base.Trimesh` : The triangular meshes
        that represent this object.
        """
        if len(self._meshes) == 0:
            self._meshes = [trimesh.creation.icosphere(radius=self.radius)]
        return self._meshes

    def copy(self, prefix="", scale=None):
        """Create a deep copy with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all names.

        Returns
        -------
        :class:`.Sphere`
            A deep copy.
        """
        if scale is None:
            scale = 1.0
        if isinstance(scale, (list, np.ndarray)):
            if scale[0] != scale[1] or scale[0] != scale[2]:
                raise ValueError("Spheres do not support non-uniform scaling!")
            scale = scale[0]
        s = Sphere(
            radius=self.radius * scale,
        )
        return s

meshes property

list of :class:~trimesh.base.Trimesh : The triangular meshes that represent this object.

radius property writable

float : The radius of the sphere in meters.

copy(prefix='', scale=None)

Create a deep copy with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all names.

Returns

:class:.Sphere A deep copy.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all names.

    Returns
    -------
    :class:`.Sphere`
        A deep copy.
    """
    if scale is None:
        scale = 1.0
    if isinstance(scale, (list, np.ndarray)):
        if scale[0] != scale[1] or scale[0] != scale[2]:
            raise ValueError("Spheres do not support non-uniform scaling!")
        scale = scale[0]
    s = Sphere(
        radius=self.radius * scale,
    )
    return s

Texture

Bases: URDFType

An image-based texture.

Parameters

filename : str The path to the image that contains this texture. This can be relative to the top-level URDF or an absolute path. image : :class:PIL.Image.Image, optional The image for the texture. If not specified, it is loaded automatically from the filename.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Texture(URDFType):
    """An image-based texture.

    Parameters
    ----------
    filename : str
        The path to the image that contains this texture. This can be
        relative to the top-level URDF or an absolute path.
    image : :class:`PIL.Image.Image`, optional
        The image for the texture.
        If not specified, it is loaded automatically from the filename.
    """

    _ATTRIBS = {"filename": (str, True)}
    _TAG = "texture"

    def __init__(self, filename, image=None):
        if image is None:
            image = PIL.image.open(filename)
        self.filename = filename
        self.image = image

    @property
    def filename(self):
        """str : Path to the image for this texture."""
        return self._filename

    @filename.setter
    def filename(self, value):
        self._filename = str(value)

    @property
    def image(self):
        """:class:`PIL.Image.Image` : The image for this texture."""
        return self._image

    @image.setter
    def image(self, value):
        if isinstance(value, str):
            value = PIL.Image.open(value)
        if isinstance(value, np.ndarray):
            value = PIL.Image.fromarray(value)
        elif not isinstance(value, PIL.Image.Image):
            raise ValueError("Texture only supports numpy arrays or PIL images")
        self._image = value

    @classmethod
    def _from_xml(cls, node, path):
        kwargs = cls._parse(node, path)

        # Load image
        fn = get_filename(path, kwargs["filename"])
        kwargs["image"] = PIL.Image.open(fn)

        return Texture(**kwargs)

    def _to_xml(self, parent, path):
        # Save the image
        filepath = get_filename(path, self.filename, makedirs=True)
        self.image.save(filepath)

        return self._unparse(path)

    def copy(self, prefix="", scale=None):
        """Create a deep copy with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all names.

        Returns
        -------
        :class:`.Texture`
            A deep copy.
        """
        v = Texture(filename=self.filename, image=self.image.copy())
        return v

filename property writable

str : Path to the image for this texture.

image property writable

:class:PIL.Image.Image : The image for this texture.

copy(prefix='', scale=None)

Create a deep copy with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all names.

Returns

:class:.Texture A deep copy.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all names.

    Returns
    -------
    :class:`.Texture`
        A deep copy.
    """
    v = Texture(filename=self.filename, image=self.image.copy())
    return v

Transmission

Bases: URDFType

An element that describes the relationship between an actuator and a joint.

Parameters

name : str The name of this transmission. trans_type : str The type of this transmission. joints : list of :class:.TransmissionJoint The joints connected to this transmission. actuators : list of :class:.Actuator The actuators connected to this transmission.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Transmission(URDFType):
    """An element that describes the relationship between an actuator and a
    joint.

    Parameters
    ----------
    name : str
        The name of this transmission.
    trans_type : str
        The type of this transmission.
    joints : list of :class:`.TransmissionJoint`
        The joints connected to this transmission.
    actuators : list of :class:`.Actuator`
        The actuators connected to this transmission.
    """

    _ATTRIBS = {
        "name": (str, True),
    }
    _ELEMENTS = {
        "joints": (TransmissionJoint, True, True),
        "actuators": (Actuator, True, True),
    }
    _TAG = "transmission"

    def __init__(self, name, trans_type, joints=None, actuators=None):
        self.name = name
        self.trans_type = trans_type
        self.joints = joints
        self.actuators = actuators

    @property
    def name(self):
        """str : The name of this transmission."""
        return self._name

    @name.setter
    def name(self, value):
        self._name = str(value)

    @property
    def trans_type(self):
        """str : The type of this transmission."""
        return self._trans_type

    @trans_type.setter
    def trans_type(self, value):
        self._trans_type = str(value)

    @property
    def joints(self):
        """:class:`.TransmissionJoint` : The joints the transmission is
        connected to.
        """
        return self._joints

    @joints.setter
    def joints(self, value):
        if value is None:
            value = []
        else:
            value = list(value)
            for v in value:
                if not isinstance(v, TransmissionJoint):
                    raise TypeError("Joints expects a list of TransmissionJoint")
        self._joints = value

    @property
    def actuators(self):
        """:class:`.Actuator` : The actuators the transmission is connected to."""
        return self._actuators

    @actuators.setter
    def actuators(self, value):
        if value is None:
            value = []
        else:
            value = list(value)
            for v in value:
                if not isinstance(v, Actuator):
                    raise TypeError("Actuators expects a list of Actuator")
        self._actuators = value

    @classmethod
    def _from_xml(cls, node, path):
        kwargs = cls._parse(node, path)
        kwargs["trans_type"] = node.find("type").text
        return Transmission(**kwargs)

    def _to_xml(self, parent, path):
        node = self._unparse(path)
        ttype = ET.Element("type")
        ttype.text = self.trans_type
        node.append(ttype)
        return node

    def copy(self, prefix="", scale=None):
        """Create a deep copy with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all names.

        Returns
        -------
        :class:`.Transmission`
            A deep copy.
        """
        return Transmission(
            name="{}{}".format(prefix, self.name),
            trans_type=self.trans_type,
            joints=[j.copy(prefix) for j in self.joints],
            actuators=[a.copy(prefix) for a in self.actuators],
        )

actuators property writable

:class:.Actuator : The actuators the transmission is connected to.

joints property writable

:class:.TransmissionJoint : The joints the transmission is connected to.

name property writable

str : The name of this transmission.

trans_type property writable

str : The type of this transmission.

copy(prefix='', scale=None)

Create a deep copy with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all names.

Returns

:class:.Transmission A deep copy.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all names.

    Returns
    -------
    :class:`.Transmission`
        A deep copy.
    """
    return Transmission(
        name="{}{}".format(prefix, self.name),
        trans_type=self.trans_type,
        joints=[j.copy(prefix) for j in self.joints],
        actuators=[a.copy(prefix) for a in self.actuators],
    )

TransmissionJoint

Bases: URDFType

A transmission joint specification.

Parameters

name : str The name of this actuator. hardwareInterfaces : list of str, optional The supported hardware interfaces to the actuator.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class TransmissionJoint(URDFType):
    """A transmission joint specification.

    Parameters
    ----------
    name : str
        The name of this actuator.
    hardwareInterfaces : list of str, optional
        The supported hardware interfaces to the actuator.
    """

    _ATTRIBS = {
        "name": (str, True),
    }
    _TAG = "joint"

    def __init__(self, name, hardwareInterfaces):
        self.name = name
        self.hardwareInterfaces = hardwareInterfaces

    @property
    def name(self):
        """str : The name of this transmission joint."""
        return self._name

    @name.setter
    def name(self, value):
        self._name = str(value)

    @property
    def hardwareInterfaces(self):
        """list of str : The supported hardware interfaces."""
        return self._hardwareInterfaces

    @hardwareInterfaces.setter
    def hardwareInterfaces(self, value):
        if value is None:
            value = []
        else:
            value = list(value)
            for i, v in enumerate(value):
                value[i] = str(v)
        self._hardwareInterfaces = value

    @classmethod
    def _from_xml(cls, node, path):
        kwargs = cls._parse(node, path)
        hi = node.findall("hardwareInterface")
        if len(hi) > 0:
            hi = [h.text for h in hi]
        kwargs["hardwareInterfaces"] = hi
        return TransmissionJoint(**kwargs)

    def _to_xml(self, parent, path):
        node = self._unparse(path)
        if len(self.hardwareInterfaces) > 0:
            for hi in self.hardwareInterfaces:
                h = ET.Element("hardwareInterface")
                h.text = hi
                node.append(h)
        return node

    def copy(self, prefix="", scale=None):
        """Create a deep copy with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all names.

        Returns
        -------
        :class:`.TransmissionJoint`
            A deep copy.
        """
        return TransmissionJoint(
            name="{}{}".format(prefix, self.name),
            hardwareInterfaces=self.hardwareInterfaces.copy(),
        )

hardwareInterfaces property writable

list of str : The supported hardware interfaces.

name property writable

str : The name of this transmission joint.

copy(prefix='', scale=None)

Create a deep copy with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all names.

Returns

:class:.TransmissionJoint A deep copy.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all names.

    Returns
    -------
    :class:`.TransmissionJoint`
        A deep copy.
    """
    return TransmissionJoint(
        name="{}{}".format(prefix, self.name),
        hardwareInterfaces=self.hardwareInterfaces.copy(),
    )

URDF

Bases: URDFType

The top-level URDF specification.

The URDF encapsulates an articulated object, such as a robot or a gripper. It is made of links and joints that tie them together and define their relative motions.

Parameters

name : str The name of the URDF. links : list of :class:.Link The links of the URDF. joints : list of :class:.Joint, optional The joints of the URDF. transmissions : list of :class:.Transmission, optional The transmissions of the URDF. materials : list of :class:.Material, optional The materials for the URDF. other_xml : str, optional A string containing any extra XML for extensions.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
class URDF(URDFType):
    """The top-level URDF specification.

    The URDF encapsulates an articulated object, such as a robot or a gripper.
    It is made of links and joints that tie them together and define their
    relative motions.

    Parameters
    ----------
    name : str
        The name of the URDF.
    links : list of :class:`.Link`
        The links of the URDF.
    joints : list of :class:`.Joint`, optional
        The joints of the URDF.
    transmissions : list of :class:`.Transmission`, optional
        The transmissions of the URDF.
    materials : list of :class:`.Material`, optional
        The materials for the URDF.
    other_xml : str, optional
        A string containing any extra XML for extensions.
    """

    _ATTRIBS = {
        "name": (str, True),
    }
    _ELEMENTS = {
        "links": (Link, True, True),
        "joints": (Joint, False, True),
        "transmissions": (Transmission, False, True),
        "materials": (Material, False, True),
    }
    _TAG = "robot"

    def __init__(self, name, links, joints=None, transmissions=None, materials=None, other_xml=None):
        if joints is None:
            joints = []
        if transmissions is None:
            transmissions = []
        if materials is None:
            materials = []

        self.name = name
        self.other_xml = other_xml

        # No setters for these
        self._links = list(links)
        self._joints = list(joints)
        self._transmissions = list(transmissions)
        self._materials = list(materials)

        # Set up private helper maps from name to value
        self._link_map = {}
        self._joint_map = {}
        self._transmission_map = {}
        self._material_map = {}

        for x in self._links:
            if x.name in self._link_map:
                raise ValueError("Two links with name {} found".format(x.name))
            self._link_map[x.name] = x

        for x in self._joints:
            if x.name in self._joint_map:
                raise ValueError("Two joints with name {} found".format(x.name))
            self._joint_map[x.name] = x

        for x in self._transmissions:
            if x.name in self._transmission_map:
                raise ValueError("Two transmissions with name {} found".format(x.name))
            self._transmission_map[x.name] = x

        for x in self._materials:
            if x.name in self._material_map:
                raise ValueError("Two materials with name {} found".format(x.name))
            self._material_map[x.name] = x

        # Synchronize materials between links and top-level set
        self._merge_materials()

        # Validate the joints and transmissions
        actuated_joints = self._validate_joints()
        self._validate_transmissions()

        # Create the link graph and base link/end link sets
        self._G = nx.DiGraph()

        # Add all links
        for link in self.links:
            self._G.add_node(link)

        # Add all edges from CHILDREN TO PARENTS, with joints as their object
        for joint in self.joints:
            parent = self._link_map[joint.parent]
            child = self._link_map[joint.child]
            self._G.add_edge(child, parent, joint=joint)

        # Validate the graph and get the base and end links
        self._base_link, self._end_links = self._validate_graph()

        # Cache the paths to the base link
        self._paths_to_base = nx.shortest_path(self._G, target=self._base_link)

        self._actuated_joints = self._sort_joints(actuated_joints)

        # Cache the reverse topological order (useful for speeding up FK,
        # as we want to start at the base and work outward to cache
        # computation.
        self._reverse_topo = list(reversed(list(nx.topological_sort(self._G))))

    @property
    def name(self):
        """str : The name of the URDF."""
        return self._name

    @name.setter
    def name(self, value):
        self._name = str(value)

    @property
    def links(self):
        """list of :class:`.Link` : The links of the URDF.

        This returns a copy of the links array which cannot be edited
        directly. If you want to add or remove links, use
        the appropriate functions.
        """
        return copy.copy(self._links)

    @property
    def link_map(self):
        """dict : Map from link names to the links themselves.

        This returns a copy of the link map which cannot be edited
        directly. If you want to add or remove links, use
        the appropriate functions.
        """
        return copy.copy(self._link_map)

    @property
    def joints(self):
        """list of :class:`.Joint` : The links of the URDF.

        This returns a copy of the joints array which cannot be edited
        directly. If you want to add or remove joints, use
        the appropriate functions.
        """
        return copy.copy(self._joints)

    @property
    def joint_map(self):
        """dict : Map from joint names to the joints themselves.

        This returns a copy of the joint map which cannot be edited
        directly. If you want to add or remove joints, use
        the appropriate functions.
        """
        return copy.copy(self._joint_map)

    @property
    def transmissions(self):
        """list of :class:`.Transmission` : The transmissions of the URDF.

        This returns a copy of the transmissions array which cannot be edited
        directly. If you want to add or remove transmissions, use
        the appropriate functions.
        """
        return copy.copy(self._transmissions)

    @property
    def transmission_map(self):
        """dict : Map from transmission names to the transmissions themselves.

        This returns a copy of the transmission map which cannot be edited
        directly. If you want to add or remove transmissions, use
        the appropriate functions.
        """
        return copy.copy(self._transmission_map)

    @property
    def materials(self):
        """list of :class:`.Material` : The materials of the URDF.

        This returns a copy of the materials array which cannot be edited
        directly. If you want to add or remove materials, use
        the appropriate functions.
        """
        return copy.copy(self._materials)

    @property
    def material_map(self):
        """dict : Map from material names to the materials themselves.

        This returns a copy of the material map which cannot be edited
        directly. If you want to add or remove materials, use
        the appropriate functions.
        """
        return copy.copy(self._material_map)

    @property
    def other_xml(self):
        """str : Any extra XML that belongs with the URDF."""
        return self._other_xml

    @other_xml.setter
    def other_xml(self, value):
        self._other_xml = value

    @property
    def actuated_joints(self):
        """list of :class:`.Joint` : The joints that are independently
        actuated.

        This excludes mimic joints and fixed joints. The joints are listed
        in topological order, starting from the base-most joint.
        """
        return self._actuated_joints

    @property
    def actuated_joint_names(self):
        """list of :class:`.Joint` : The names of joints that are independently
        actuated.

        This excludes mimic joints and fixed joints. The joints are listed
        in topological order, starting from the base-most joint.
        """
        return [j.name for j in self._actuated_joints]

    def cfg_to_vector(self, cfg):
        """Convert a configuration dictionary into a configuration vector.

        Parameters
        ----------
        cfg : dict or None
            The configuration value.

        Returns
        -------
        vec : (n,) float
            The configuration vector, or None if no actuated joints present.
        """
        if cfg is None:
            if len(self.actuated_joints) > 0:
                return np.zeros(len(self.actuated_joints))
            else:
                return None
        elif isinstance(cfg, (list, tuple, np.ndarray)):
            return np.asanyarray(cfg)
        elif isinstance(cfg, dict):
            vec = np.zeros(len(self.actuated_joints))
            for i, jn in enumerate(self.actuated_joint_names):
                if jn in cfg:
                    vec[i] = cfg[jn]
            return vec
        else:
            raise ValueError("Invalid configuration: {}".format(cfg))

    @property
    def base_link(self):
        """:class:`.Link`: The base link for the URDF.

        The base link is the single link that has no parent.
        """
        return self._base_link

    @property
    def end_links(self):
        """list of :class:`.Link`: The end links for the URDF.

        The end links are the links that have no children.
        """
        return self._end_links

    @property
    def joint_limit_cfgs(self):
        """tuple of dict : The lower-bound and upper-bound joint configuration
        maps.

        The first map is the lower-bound map, which maps limited joints to
        their lower joint limits.
        The second map is the upper-bound map, which maps limited joints to
        their upper joint limits.
        """
        lb = {}
        ub = {}
        for joint in self.actuated_joints:
            if joint.limit is not None:
                if joint.limit.lower is not None:
                    lb[joint] = joint.limit.lower
                if joint.limit.upper is not None:
                    ub[joint] = joint.limit.upper
        return (lb, ub)

    @property
    def joint_limits(self):
        """(n,2) float : A lower and upper limit for each joint."""
        limits = []
        for joint in self.actuated_joints:
            limit = [-np.infty, np.infty]
            if joint.limit is not None:
                if joint.limit.lower is not None:
                    limit[0] = joint.limit.lower
                if joint.limit.upper is not None:
                    limit[1] = joint.limit.upper
            limits.append(limit)
        return np.array(limits)

    def link_fk(self, cfg=None, link=None, links=None, use_names=False):
        """Computes the poses of the URDF's links via forward kinematics.

        Parameters
        ----------
        cfg : dict or (n), float
            A map from joints or joint names to configuration values for
            each joint, or a list containing a value for each actuated joint
            in sorted order from the base link.
            If not specified, all joints are assumed to be in their default
            configurations.
        link : str or :class:`.Link`
            A single link or link name to return a pose for.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only these links will be in the returned map. If neither
            link nor links are specified all links are returned.
        use_names : bool
            If True, the returned dictionary will have keys that are string
            link names rather than the links themselves.

        Returns
        -------
        fk : dict or (4,4) float
            A map from links to 4x4 homogenous transform matrices that
            position them relative to the base link's frame, or a single
            4x4 matrix if ``link`` is specified.
        """
        # Process config value
        joint_cfg = self._process_cfg(cfg)

        # Process link set
        link_set = set()
        if link is not None:
            if isinstance(link, six.string_types):
                link_set.add(self._link_map[link])
            elif isinstance(link, Link):
                link_set.add(link)
        elif links is not None:
            for lnk in links:
                if isinstance(lnk, six.string_types):
                    link_set.add(self._link_map[lnk])
                elif isinstance(lnk, Link):
                    link_set.add(lnk)
                else:
                    raise TypeError("Got object of type {} in links list".format(type(lnk)))
        else:
            link_set = self.links

        # Compute forward kinematics in reverse topological order
        fk = OrderedDict()
        for lnk in self._reverse_topo:
            if lnk not in link_set:
                continue
            pose = np.eye(4, dtype=np.float64)
            path = self._paths_to_base[lnk]
            for i in range(len(path) - 1):
                child = path[i]
                parent = path[i + 1]
                joint = self._G.get_edge_data(child, parent)["joint"]

                cfg = None
                if joint.mimic is not None:
                    mimic_joint = self._joint_map[joint.mimic.joint]
                    if mimic_joint in joint_cfg:
                        cfg = joint_cfg[mimic_joint]
                        cfg = joint.mimic.multiplier * cfg + joint.mimic.offset
                elif joint in joint_cfg:
                    cfg = joint_cfg[joint]
                pose = joint.get_child_pose(cfg).dot(pose)

                # Check existing FK to see if we can exit early
                if parent in fk:
                    pose = fk[parent].dot(pose)
                    break
            fk[lnk] = pose

        if link:
            if isinstance(link, six.string_types):
                return fk[self._link_map[link]]
            else:
                return fk[link]
        if use_names:
            return {ell.name: fk[ell] for ell in fk}
        return fk

    def link_fk_batch(self, cfgs=None, link=None, links=None, use_names=False):
        """Computes the poses of the URDF's links via forward kinematics in a batch.

        Parameters
        ----------
        cfgs : dict, list of dict, or (n,m), float
            One of the following: (A) a map from joints or joint names to vectors
            of joint configuration values, (B) a list of maps from joints or joint names
            to single configuration values, or (C) a list of ``n`` configuration vectors,
            each of which has a vector with an entry for each actuated joint.
        link : str or :class:`.Link`
            A single link or link name to return a pose for.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only these links will be in the returned map. If neither
            link nor links are specified all links are returned.
        use_names : bool
            If True, the returned dictionary will have keys that are string
            link names rather than the links themselves.

        Returns
        -------
        fk : dict or (n,4,4) float
            A map from links to a (n,4,4) vector of homogenous transform matrices that
            position the links relative to the base link's frame, or a single
            nx4x4 matrix if ``link`` is specified.
        """
        joint_cfgs, n_cfgs = self._process_cfgs(cfgs)

        # Process link set
        link_set = set()
        if link is not None:
            if isinstance(link, six.string_types):
                link_set.add(self._link_map[link])
            elif isinstance(link, Link):
                link_set.add(link)
        elif links is not None:
            for lnk in links:
                if isinstance(lnk, six.string_types):
                    link_set.add(self._link_map[lnk])
                elif isinstance(lnk, Link):
                    link_set.add(lnk)
                else:
                    raise TypeError("Got object of type {} in links list".format(type(lnk)))
        else:
            link_set = self.links

        # Compute FK mapping each link to a vector of matrices, one matrix per cfg
        fk = OrderedDict()
        for lnk in self._reverse_topo:
            if lnk not in link_set:
                continue
            poses = np.tile(np.eye(4, dtype=np.float64), (n_cfgs, 1, 1))
            path = self._paths_to_base[lnk]
            for i in range(len(path) - 1):
                child = path[i]
                parent = path[i + 1]
                joint = self._G.get_edge_data(child, parent)["joint"]

                cfg_vals = None
                if joint.mimic is not None:
                    mimic_joint = self._joint_map[joint.mimic.joint]
                    if mimic_joint in joint_cfgs:
                        cfg_vals = joint_cfgs[mimic_joint]
                        cfg_vals = joint.mimic.multiplier * cfg_vals + joint.mimic.offset
                elif joint in joint_cfgs:
                    cfg_vals = joint_cfgs[joint]
                poses = np.matmul(joint.get_child_poses(cfg_vals, n_cfgs), poses)

                if parent in fk:
                    poses = np.matmul(fk[parent], poses)
                    break
            fk[lnk] = poses

        if link:
            if isinstance(link, six.string_types):
                return fk[self._link_map[link]]
            else:
                return fk[link]
        if use_names:
            return {ell.name: fk[ell] for ell in fk}
        return fk

    def visual_geometry_fk(self, cfg=None, links=None):
        """Computes the poses of the URDF's visual geometries using fk.

        Parameters
        ----------
        cfg : dict or (n), float
            A map from joints or joint names to configuration values for
            each joint, or a list containing a value for each actuated joint
            in sorted order from the base link.
            If not specified, all joints are assumed to be in their default
            configurations.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only geometries from these links will be in the returned map.
            If not specified, all links are returned.

        Returns
        -------
        fk : dict
            A map from :class:`Geometry` objects that are part of the visual
            elements of the specified links to the 4x4 homogenous transform
            matrices that position them relative to the base link's frame.
        """
        lfk = self.link_fk(cfg=cfg, links=links)

        fk = OrderedDict()
        for link in lfk:
            for visual in link.visuals:
                fk[visual.geometry] = lfk[link].dot(visual.origin)
        return fk

    def visual_geometry_fk_batch(self, cfgs=None, links=None):
        """Computes the poses of the URDF's visual geometries using fk.

        Parameters
        ----------
        cfgs : dict, list of dict, or (n,m), float
            One of the following: (A) a map from joints or joint names to vectors
            of joint configuration values, (B) a list of maps from joints or joint names
            to single configuration values, or (C) a list of ``n`` configuration vectors,
            each of which has a vector with an entry for each actuated joint.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only geometries from these links will be in the returned map.
            If not specified, all links are returned.

        Returns
        -------
        fk : dict
            A map from :class:`Geometry` objects that are part of the visual
            elements of the specified links to the 4x4 homogenous transform
            matrices that position them relative to the base link's frame.
        """
        lfk = self.link_fk_batch(cfgs=cfgs, links=links)

        fk = OrderedDict()
        for link in lfk:
            for visual in link.visuals:
                fk[visual.geometry] = np.matmul(lfk[link], visual.origin)
        return fk

    def visual_trimesh_fk(self, cfg=None, links=None):
        """Computes the poses of the URDF's visual trimeshes using fk.

        Parameters
        ----------
        cfg : dict or (n), float
            A map from joints or joint names to configuration values for
            each joint, or a list containing a value for each actuated joint
            in sorted order from the base link.
            If not specified, all joints are assumed to be in their default
            configurations.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only trimeshes from these links will be in the returned map.
            If not specified, all links are returned.

        Returns
        -------
        fk : dict
            A map from :class:`~trimesh.base.Trimesh` objects that are
            part of the visual geometry of the specified links to the
            4x4 homogenous transform matrices that position them relative
            to the base link's frame.
        """
        lfk = self.link_fk(cfg=cfg, links=links)

        fk = OrderedDict()
        for link in lfk:
            for visual in link.visuals:
                for mesh in visual.geometry.meshes:
                    pose = lfk[link].dot(visual.origin)
                    if visual.geometry.mesh is not None:
                        if visual.geometry.mesh.scale is not None:
                            S = np.eye(4, dtype=np.float64)
                            S[:3, :3] = np.diag(visual.geometry.mesh.scale)
                            pose = pose.dot(S)
                    fk[mesh] = pose
        return fk

    def visual_trimesh_fk_batch(self, cfgs=None, links=None):
        """Computes the poses of the URDF's visual trimeshes using fk.

        Parameters
        ----------
        cfgs : dict, list of dict, or (n,m), float
            One of the following: (A) a map from joints or joint names to vectors
            of joint configuration values, (B) a list of maps from joints or joint names
            to single configuration values, or (C) a list of ``n`` configuration vectors,
            each of which has a vector with an entry for each actuated joint.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only trimeshes from these links will be in the returned map.
            If not specified, all links are returned.

        Returns
        -------
        fk : dict
            A map from :class:`~trimesh.base.Trimesh` objects that are
            part of the visual geometry of the specified links to the
            4x4 homogenous transform matrices that position them relative
            to the base link's frame.
        """
        lfk = self.link_fk_batch(cfgs=cfgs, links=links)

        fk = OrderedDict()
        for link in lfk:
            for visual in link.visuals:
                for mesh in visual.geometry.meshes:
                    poses = np.matmul(lfk[link], visual.origin)
                    if visual.geometry.mesh is not None:
                        if visual.geometry.mesh.scale is not None:
                            S = np.eye(4, dtype=np.float64)
                            S[:3, :3] = np.diag(visual.geometry.mesh.scale)
                            poses = np.matmul(poses, S)
                    fk[mesh] = poses
        return fk

    def collision_geometry_fk(self, cfg=None, links=None):
        """Computes the poses of the URDF's collision geometries using fk.

        Parameters
        ----------
        cfg : dict or (n), float
            A map from joints or joint names to configuration values for
            each joint, or a list containing a value for each actuated joint
            in sorted order from the base link.
            If not specified, all joints are assumed to be in their default
            configurations.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only geometries from these links will be in the returned map.
            If not specified, all links are returned.

        Returns
        -------
        fk : dict
            A map from :class:`Geometry` objects that are part of the collision
            elements of the specified links to the 4x4 homogenous transform
            matrices that position them relative to the base link's frame.
        """
        lfk = self.link_fk(cfg=cfg, links=links)

        fk = OrderedDict()
        for link in lfk:
            for collision in link.collisions:
                fk[collision] = lfk[link].dot(collision.origin)
        return fk

    def collision_geometry_fk_batch(self, cfgs=None, links=None):
        """Computes the poses of the URDF's collision geometries using fk.

        Parameters
        ----------
        cfgs : dict, list of dict, or (n,m), float
            One of the following: (A) a map from joints or joint names to vectors
            of joint configuration values, (B) a list of maps from joints or joint names
            to single configuration values, or (C) a list of ``n`` configuration vectors,
            each of which has a vector with an entry for each actuated joint.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only geometries from these links will be in the returned map.
            If not specified, all links are returned.

        Returns
        -------
        fk : dict
            A map from :class:`Geometry` objects that are part of the collision
            elements of the specified links to the 4x4 homogenous transform
            matrices that position them relative to the base link's frame.
        """
        lfk = self.link_fk_batch(cfgs=cfgs, links=links)

        fk = OrderedDict()
        for link in lfk:
            for collision in link.collisions:
                fk[collision] = np.matmul(lfk[link], collision.origin)
        return fk

    def collision_trimesh_fk(self, cfg=None, links=None):
        """Computes the poses of the URDF's collision trimeshes using fk.

        Parameters
        ----------
        cfg : dict or (n), float
            A map from joints or joint names to configuration values for
            each joint, or a list containing a value for each actuated joint
            in sorted order from the base link.
            If not specified, all joints are assumed to be in their default
            configurations.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only trimeshes from these links will be in the returned map.
            If not specified, all links are returned.

        Returns
        -------
        fk : dict
            A map from :class:`~trimesh.base.Trimesh` objects that are
            part of the collision geometry of the specified links to the
            4x4 homogenous transform matrices that position them relative
            to the base link's frame.
        """
        lfk = self.link_fk(cfg=cfg, links=links)

        fk = OrderedDict()
        for link in lfk:
            pose = lfk[link]
            cm = link.collision_mesh
            if cm is not None:
                fk[cm] = pose
        return fk

    def collision_trimesh_fk_batch(self, cfgs=None, links=None):
        """Computes the poses of the URDF's collision trimeshes using fk.

        Parameters
        ----------
        cfgs : dict, list of dict, or (n,m), float
            One of the following: (A) a map from joints or joint names to vectors
            of joint configuration values, (B) a list of maps from joints or joint names
            to single configuration values, or (C) a list of ``n`` configuration vectors,
            each of which has a vector with an entry for each actuated joint.
        links : list of str or list of :class:`.Link`
            The links or names of links to perform forward kinematics on.
            Only trimeshes from these links will be in the returned map.
            If not specified, all links are returned.

        Returns
        -------
        fk : dict
            A map from :class:`~trimesh.base.Trimesh` objects that are
            part of the collision geometry of the specified links to the
            4x4 homogenous transform matrices that position them relative
            to the base link's frame.
        """
        lfk = self.link_fk_batch(cfgs=cfgs, links=links)

        fk = OrderedDict()
        for link in lfk:
            poses = lfk[link]
            cm = link.collision_mesh
            if cm is not None:
                fk[cm] = poses
        return fk

    def animate(self, cfg_trajectory=None, loop_time=3.0, use_collision=False):
        """Animate the URDF through a configuration trajectory.

        Parameters
        ----------
        cfg_trajectory : dict or (m,n) float
            A map from joints or joint names to lists of configuration values
            for each joint along the trajectory, or a vector of
            vectors where the second dimension contains a value for each joint.
            If not specified, all joints will articulate from limit to limit.
            The trajectory steps are assumed to be equally spaced out in time.
        loop_time : float
            The time to loop the animation for, in seconds. The trajectory
            will play fowards and backwards during this time, ending
            at the inital configuration.
        use_collision : bool
            If True, the collision geometry is visualized instead of
            the visual geometry.

        Examples
        --------

        You can run this without specifying a ``cfg_trajectory`` to view
        the full articulation of the URDF

        >>> robot = URDF.load("ur5.urdf")
        >>> robot.animate()

        .. image:: /_static/ur5.gif

        >>> ct = {"shoulder_pan_joint": [0.0, 2 * np.pi]}
        >>> robot.animate(cfg_trajectory=ct)

        .. image:: /_static/ur5_shoulder.gif

        >>> ct = {
        ...     "shoulder_pan_joint": [-np.pi / 4, np.pi / 4],
        ...     "shoulder_lift_joint": [0.0, -np.pi / 2.0],
        ...     "elbow_joint": [0.0, np.pi / 2.0],
        ... }
        >>> robot.animate(cfg_trajectory=ct)

        .. image:: /_static/ur5_three_joints.gif

        """
        import pyrender  # Save pyrender import for here for CI

        ct = cfg_trajectory

        traj_len = None  # Length of the trajectory in steps
        ct_np = {}  # Numpyified trajectory

        # If trajectory not specified, articulate between the limits.
        if ct is None:
            lb, ub = self.joint_limit_cfgs
            if len(lb) > 0:
                traj_len = 2
                ct_np = {k: np.array([lb[k], ub[k]]) for k in lb}

        # If it is specified, parse it and extract the trajectory length.
        elif isinstance(ct, dict):
            if len(ct) > 0:
                for k in ct:
                    val = np.asanyarray(ct[k]).astype(np.float64)
                    if traj_len is None:
                        traj_len = len(val)
                    elif traj_len != len(val):
                        raise ValueError("Trajectories must be same length")
                    ct_np[k] = val
        elif isinstance(ct, (list, tuple, np.ndarray)):
            ct = np.asanyarray(ct).astype(np.float64)
            if ct.ndim == 1:
                ct = ct.reshape(-1, 1)
            if ct.ndim != 2 or ct.shape[1] != len(self.actuated_joints):
                raise ValueError("Cfg trajectory must have entry for each joint")
            ct_np = {j: ct[:, i] for i, j in enumerate(self.actuated_joints)}
        else:
            raise TypeError("Invalid type for cfg_trajectory: {}".format(type(cfg_trajectory)))

        # If there isn't a trajectory to render, just show the model and exit
        if len(ct_np) == 0 or traj_len < 2:
            self.show(use_collision=use_collision)
            return

        # Create an array of times that loops from 0 to 1 and back to 0
        fps = 30.0
        n_steps = int(loop_time * fps / 2.0)
        times = np.linspace(0.0, 1.0, n_steps)
        times = np.hstack((times, np.flip(times)))

        # Create bin edges in the range [0, 1] for each trajectory step
        bins = np.arange(traj_len) / (float(traj_len) - 1.0)

        # Compute alphas for each time
        right_inds = np.digitize(times, bins, right=True)
        right_inds[right_inds == 0] = 1
        alphas = (bins[right_inds] - times) / (bins[right_inds] - bins[right_inds - 1])

        # Create the new interpolated trajectory
        new_ct = {}
        for k in ct_np:
            new_ct[k] = alphas * ct_np[k][right_inds - 1] + (1.0 - alphas) * ct_np[k][right_inds]

        # Create the scene
        if use_collision:
            fk = self.collision_trimesh_fk()
        else:
            fk = self.visual_trimesh_fk()

        node_map = {}
        scene = pyrender.Scene()
        for tm in fk:
            pose = fk[tm]
            mesh = pyrender.Mesh.from_trimesh(tm, smooth=False)
            node = scene.add(mesh, pose=pose)
            node_map[tm] = node

        # Get base pose to focus on
        blp = self.link_fk(links=[self.base_link])[self.base_link]

        # Pop the visualizer asynchronously
        v = pyrender.Viewer(scene, run_in_thread=True, use_raymond_lighting=True, view_center=blp[:3, 3])

        # Now, run our loop
        i = 0
        while v.is_active:
            cfg = {k: new_ct[k][i] for k in new_ct}
            i = (i + 1) % len(times)

            if use_collision:
                fk = self.collision_trimesh_fk(cfg=cfg)
            else:
                fk = self.visual_trimesh_fk(cfg=cfg)

            v.render_lock.acquire()
            for mesh in fk:
                pose = fk[mesh]
                node_map[mesh].matrix = pose
            v.render_lock.release()

            time.sleep(1.0 / fps)

    def show(self, cfg=None, use_collision=False):
        """Visualize the URDF in a given configuration.

        Parameters
        ----------
        cfg : dict or (n), float
            A map from joints or joint names to configuration values for
            each joint, or a list containing a value for each actuated joint
            in sorted order from the base link.
            If not specified, all joints are assumed to be in their default
            configurations.
        use_collision : bool
            If True, the collision geometry is visualized instead of
            the visual geometry.
        """
        import pyrender  # Save pyrender import for here for CI

        if use_collision:
            fk = self.collision_trimesh_fk(cfg=cfg)
        else:
            fk = self.visual_trimesh_fk(cfg=cfg)

        scene = pyrender.Scene()
        for tm in fk:
            pose = fk[tm]
            mesh = pyrender.Mesh.from_trimesh(tm, smooth=False)
            scene.add(mesh, pose=pose)
        pyrender.Viewer(scene, use_raymond_lighting=True)

    def copy(self, name=None, prefix="", scale=None, collision_only=False):
        """Make a deep copy of the URDF.

        Parameters
        ----------
        name : str, optional
            A name for the new URDF. If not specified, ``self.name`` is used.
        prefix : str, optional
            A prefix to apply to all names except for the base URDF name.
        scale : float or (3,) float, optional
            A scale to apply to the URDF.
        collision_only : bool, optional
            If True, all visual geometry is redirected to the collision geometry.

        Returns
        -------
        copy : :class:`.URDF`
            The copied URDF.
        """
        return URDF(
            name=(name if name else self.name),
            links=[v.copy(prefix, scale, collision_only) for v in self.links],
            joints=[v.copy(prefix, scale) for v in self.joints],
            transmissions=[v.copy(prefix, scale) for v in self.transmissions],
            materials=[v.copy(prefix, scale) for v in self.materials],
            other_xml=self.other_xml,
        )

    def save(self, file_obj):
        """Save this URDF to a file.

        Parameters
        ----------
        file_obj : str or file-like object
            The file to save the URDF to. Should be the path to the
            ``.urdf`` XML file. Any paths in the URDF should be specified
            as relative paths to the ``.urdf`` file instead of as ROS
            resources.

        Returns
        -------
        urdf : :class:`.URDF`
            The parsed URDF.
        """
        if isinstance(file_obj, six.string_types):
            path, _ = os.path.split(file_obj)
        else:
            path, _ = os.path.split(os.path.realpath(file_obj.name))

        node = self._to_xml(None, path)
        tree = ET.ElementTree(node)
        tree.write(file_obj, pretty_print=True, xml_declaration=True, encoding="utf-8")

    def join(self, other, link, origin=None, name=None, prefix=""):
        """Join another URDF to this one by rigidly fixturing the two at a link.

        Parameters
        ----------
        other : :class:.`URDF`
            Another URDF to fuze to this one.
        link : :class:`.Link` or str
            The link of this URDF to attach the other URDF to.
        origin : (4,4) float, optional
            The location in this URDF's link frame to attach the base link of the other
            URDF at.
        name : str, optional
            A name for the new URDF.
        prefix : str, optional
            If specified, all joints and links from the (other) mesh will be pre-fixed
            with this value to avoid name clashes.

        Returns
        -------
        :class:`.URDF`
            The new URDF.
        """
        myself = self.copy()
        other = other.copy(prefix=prefix)

        # Validate
        link_names = set(myself.link_map.keys())
        other_link_names = set(other.link_map.keys())
        if len(link_names.intersection(other_link_names)) > 0:
            raise ValueError("Cannot merge two URDFs with shared link names")

        joint_names = set(myself.joint_map.keys())
        other_joint_names = set(other.joint_map.keys())
        if len(joint_names.intersection(other_joint_names)) > 0:
            raise ValueError("Cannot merge two URDFs with shared joint names")

        links = myself.links + other.links
        joints = myself.joints + other.joints
        transmissions = myself.transmissions + other.transmissions
        materials = myself.materials + other.materials

        if name is None:
            name = self.name

        # Create joint that links the two rigidly
        joints.append(
            Joint(
                name="{}_join_{}{}_joint".format(self.name, prefix, other.name),
                joint_type="fixed",
                parent=link if isinstance(link, str) else link.name,
                child=other.base_link.name,
                origin=origin,
            )
        )

        return URDF(name=name, links=links, joints=joints, transmissions=transmissions, materials=materials)

    def _merge_materials(self):
        """Merge the top-level material set with the link materials."""
        for link in self.links:
            for v in link.visuals:
                if v.material is None:
                    continue
                if v.material.name in self.material_map:
                    v.material = self._material_map[v.material.name]
                else:
                    self._materials.append(v.material)
                    self._material_map[v.material.name] = v.material

    @staticmethod
    def load(file_obj):
        """Load a URDF from a file.

        Parameters
        ----------
        file_obj : str or file-like object
            The file to load the URDF from. Should be the path to the
            ``.urdf`` XML file. Any paths in the URDF should be specified
            as relative paths to the ``.urdf`` file instead of as ROS
            resources.

        Returns
        -------
        urdf : :class:`.URDF`
            The parsed URDF.
        """
        if isinstance(file_obj, six.string_types):
            if os.path.isfile(file_obj):
                parser = ET.XMLParser(remove_comments=True, remove_blank_text=True)
                tree = ET.parse(file_obj, parser=parser)
                path, _ = os.path.split(file_obj)
            else:
                raise ValueError("{} is not a file".format(file_obj))
        else:
            parser = ET.XMLParser(remove_comments=True, remove_blank_text=True)
            tree = ET.parse(file_obj, parser=parser)
            path, _ = os.path.split(file_obj.name)

        node = tree.getroot()
        return URDF._from_xml(node, path)

    def _validate_joints(self):
        """Raise an exception of any joints are invalidly specified.

        Checks for the following:

        - Joint parents are valid link names.
        - Joint children are valid link names that aren't the same as parent.
        - Joint mimics have valid joint names that aren't the same joint.

        Returns
        -------
        actuated_joints : list of :class:`.Joint`
            The joints in the model that are independently controllable.
        """
        actuated_joints = []
        for joint in self.joints:
            if joint.parent not in self._link_map:
                raise ValueError("Joint {} has invalid parent link name {}".format(joint.name, joint.parent))
            if joint.child not in self._link_map:
                raise ValueError("Joint {} has invalid child link name {}".format(joint.name, joint.child))
            if joint.child == joint.parent:
                raise ValueError("Joint {} has matching parent and child".format(joint.name))
            if joint.mimic is not None:
                if joint.mimic.joint not in self._joint_map:
                    raise ValueError(
                        "Joint {} has an invalid mimic joint name {}".format(joint.name, joint.mimic.joint)
                    )
                if joint.mimic.joint == joint.name:
                    raise ValueError("Joint {} set up to mimic itself".format(joint.mimic.joint))
            elif joint.joint_type != "fixed":
                actuated_joints.append(joint)

        # Do a depth-first search
        return actuated_joints

    def _sort_joints(self, joints):
        """Sort joints by ascending distance from the base link (topologically).

        Parameters
        ----------
        joints : list of :class:`.Joint`
            The joints to sort.

        Returns
        -------
        joints : list of :class:`.Joint`
            The sorted joints.
        """
        lens = []
        for joint in joints:
            child_link = self._link_map[joint.child]
            lens.append(len(self._paths_to_base[child_link]))
        order = np.argsort(lens)
        return np.array(joints)[order].tolist()

    def _validate_transmissions(self):
        """Raise an exception of any transmissions are invalidly specified.

        Checks for the following:

        - Transmission joints have valid joint names.
        """
        for t in self.transmissions:
            for joint in t.joints:
                if joint.name not in self._joint_map:
                    raise ValueError("Transmission {} has invalid joint name {}".format(t.name, joint.name))

    def _validate_graph(self):
        """Raise an exception if the link-joint structure is invalid.

        Checks for the following:

        - The graph is connected in the undirected sense.
        - The graph is acyclic in the directed sense.
        - The graph has only one base link.

        Returns
        -------
        base_link : :class:`.Link`
            The base link of the URDF.
        end_links : list of :class:`.Link`
            The end links of the URDF.
        """

        # Check that the link graph is weakly connected
        if not nx.is_weakly_connected(self._G):
            link_clusters = []
            for cc in nx.weakly_connected_components(self._G):
                cluster = []
                for n in cc:
                    cluster.append(n.name)
                link_clusters.append(cluster)
            message = "Links are not all connected. Connected components are:"
            for lc in link_clusters:
                message += "\n\t"
                for n in lc:
                    message += " {}".format(n)
            raise ValueError(message)

        # Check that link graph is acyclic
        if not nx.is_directed_acyclic_graph(self._G):
            raise ValueError("There are cycles in the link graph")

        # Ensure that there is exactly one base link, which has no parent
        base_link = None
        end_links = []
        for n in self._G:
            if len(nx.descendants(self._G, n)) == 0:
                if base_link is None:
                    base_link = n
                else:
                    raise ValueError("Links {} and {} are both base links!".format(n.name, base_link.name))
            if len(nx.ancestors(self._G, n)) == 0:
                end_links.append(n)
        return base_link, end_links

    def _process_cfg(self, cfg):
        """Process a joint configuration spec into a dictionary mapping
        joints to configuration values.
        """
        joint_cfg = {}
        if cfg is None:
            return joint_cfg
        if isinstance(cfg, dict):
            for joint in cfg:
                if isinstance(joint, six.string_types):
                    joint_cfg[self._joint_map[joint]] = cfg[joint]
                elif isinstance(joint, Joint):
                    joint_cfg[joint] = cfg[joint]
        elif isinstance(cfg, (list, tuple, np.ndarray)):
            if len(cfg) != len(self.actuated_joints):
                raise ValueError("Cfg must have same length as actuated joints if specified as a numerical array")
            for joint, value in zip(self.actuated_joints, cfg):
                joint_cfg[joint] = value
        else:
            raise TypeError("Invalid type for config")
        return joint_cfg

    def _process_cfgs(self, cfgs):
        """Process a list of joint configurations into a dictionary mapping joints to
        configuration values.

        This should result in a dict mapping each joint to a list of cfg values, one
        per joint.
        """
        joint_cfg = {j: [] for j in self.actuated_joints}
        n_cfgs = None
        if isinstance(cfgs, dict):
            for joint in cfgs:
                if isinstance(joint, six.string_types):
                    joint_cfg[self._joint_map[joint]] = cfgs[joint]
                else:
                    joint_cfg[joint] = cfgs[joint]
                if n_cfgs is None:
                    n_cfgs = len(cfgs[joint])
        elif isinstance(cfgs, (list, tuple, np.ndarray)):
            n_cfgs = len(cfgs)
            if isinstance(cfgs[0], dict):
                for cfg in cfgs:
                    for joint in cfg:
                        if isinstance(joint, six.string_types):
                            joint_cfg[self._joint_map[joint]].append(cfg[joint])
                        else:
                            joint_cfg[joint].append(cfg[joint])
            elif cfgs[0] is None:
                pass
            else:
                cfgs = np.asanyarray(cfgs, dtype=np.float64)
                for i, j in enumerate(self.actuated_joints):
                    joint_cfg[j] = cfgs[:, i]
        else:
            raise ValueError("Incorrectly formatted config array")

        for j in joint_cfg:
            if len(joint_cfg[j]) == 0:
                joint_cfg[j] = None
            elif len(joint_cfg[j]) != n_cfgs:
                raise ValueError("Inconsistent number of configurations for joints")

        return joint_cfg, n_cfgs

    @classmethod
    def _from_xml(cls, node, path):
        valid_tags = set(["joint", "link", "transmission", "material"])
        kwargs = cls._parse(node, path)

        extra_xml_node = ET.Element("extra")
        for child in node:
            if child.tag not in valid_tags:
                extra_xml_node.append(child)

        data = ET.tostring(extra_xml_node)
        kwargs["other_xml"] = data
        return URDF(**kwargs)

    def _to_xml(self, parent, path):
        node = self._unparse(path)
        if self.other_xml:
            extra_tree = ET.fromstring(self.other_xml)
            for child in extra_tree:
                node.append(child)
        return node

actuated_joint_names property

list of :class:.Joint : The names of joints that are independently actuated.

This excludes mimic joints and fixed joints. The joints are listed in topological order, starting from the base-most joint.

actuated_joints property

list of :class:.Joint : The joints that are independently actuated.

This excludes mimic joints and fixed joints. The joints are listed in topological order, starting from the base-most joint.

:class:.Link: The base link for the URDF.

The base link is the single link that has no parent.

list of :class:.Link: The end links for the URDF.

The end links are the links that have no children.

joint_limit_cfgs property

tuple of dict : The lower-bound and upper-bound joint configuration maps.

The first map is the lower-bound map, which maps limited joints to their lower joint limits. The second map is the upper-bound map, which maps limited joints to their upper joint limits.

joint_limits property

(n,2) float : A lower and upper limit for each joint.

joint_map property

dict : Map from joint names to the joints themselves.

This returns a copy of the joint map which cannot be edited directly. If you want to add or remove joints, use the appropriate functions.

joints property

list of :class:.Joint : The links of the URDF.

This returns a copy of the joints array which cannot be edited directly. If you want to add or remove joints, use the appropriate functions.

dict : Map from link names to the links themselves.

This returns a copy of the link map which cannot be edited directly. If you want to add or remove links, use the appropriate functions.

list of :class:.Link : The links of the URDF.

This returns a copy of the links array which cannot be edited directly. If you want to add or remove links, use the appropriate functions.

material_map property

dict : Map from material names to the materials themselves.

This returns a copy of the material map which cannot be edited directly. If you want to add or remove materials, use the appropriate functions.

materials property

list of :class:.Material : The materials of the URDF.

This returns a copy of the materials array which cannot be edited directly. If you want to add or remove materials, use the appropriate functions.

name property writable

str : The name of the URDF.

other_xml property writable

str : Any extra XML that belongs with the URDF.

transmission_map property

dict : Map from transmission names to the transmissions themselves.

This returns a copy of the transmission map which cannot be edited directly. If you want to add or remove transmissions, use the appropriate functions.

transmissions property

list of :class:.Transmission : The transmissions of the URDF.

This returns a copy of the transmissions array which cannot be edited directly. If you want to add or remove transmissions, use the appropriate functions.

animate(cfg_trajectory=None, loop_time=3.0, use_collision=False)

Animate the URDF through a configuration trajectory.

Parameters

cfg_trajectory : dict or (m,n) float A map from joints or joint names to lists of configuration values for each joint along the trajectory, or a vector of vectors where the second dimension contains a value for each joint. If not specified, all joints will articulate from limit to limit. The trajectory steps are assumed to be equally spaced out in time. loop_time : float The time to loop the animation for, in seconds. The trajectory will play fowards and backwards during this time, ending at the inital configuration. use_collision : bool If True, the collision geometry is visualized instead of the visual geometry.

Examples

You can run this without specifying a cfg_trajectory to view the full articulation of the URDF

robot = URDF.load("ur5.urdf") robot.animate()

.. image:: /_static/ur5.gif

ct = {"shoulder_pan_joint": [0.0, 2 * np.pi]} robot.animate(cfg_trajectory=ct)

.. image:: /_static/ur5_shoulder.gif

ct = { ... "shoulder_pan_joint": [-np.pi / 4, np.pi / 4], ... "shoulder_lift_joint": [0.0, -np.pi / 2.0], ... "elbow_joint": [0.0, np.pi / 2.0], ... } robot.animate(cfg_trajectory=ct)

.. image:: /_static/ur5_three_joints.gif

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def animate(self, cfg_trajectory=None, loop_time=3.0, use_collision=False):
    """Animate the URDF through a configuration trajectory.

    Parameters
    ----------
    cfg_trajectory : dict or (m,n) float
        A map from joints or joint names to lists of configuration values
        for each joint along the trajectory, or a vector of
        vectors where the second dimension contains a value for each joint.
        If not specified, all joints will articulate from limit to limit.
        The trajectory steps are assumed to be equally spaced out in time.
    loop_time : float
        The time to loop the animation for, in seconds. The trajectory
        will play fowards and backwards during this time, ending
        at the inital configuration.
    use_collision : bool
        If True, the collision geometry is visualized instead of
        the visual geometry.

    Examples
    --------

    You can run this without specifying a ``cfg_trajectory`` to view
    the full articulation of the URDF

    >>> robot = URDF.load("ur5.urdf")
    >>> robot.animate()

    .. image:: /_static/ur5.gif

    >>> ct = {"shoulder_pan_joint": [0.0, 2 * np.pi]}
    >>> robot.animate(cfg_trajectory=ct)

    .. image:: /_static/ur5_shoulder.gif

    >>> ct = {
    ...     "shoulder_pan_joint": [-np.pi / 4, np.pi / 4],
    ...     "shoulder_lift_joint": [0.0, -np.pi / 2.0],
    ...     "elbow_joint": [0.0, np.pi / 2.0],
    ... }
    >>> robot.animate(cfg_trajectory=ct)

    .. image:: /_static/ur5_three_joints.gif

    """
    import pyrender  # Save pyrender import for here for CI

    ct = cfg_trajectory

    traj_len = None  # Length of the trajectory in steps
    ct_np = {}  # Numpyified trajectory

    # If trajectory not specified, articulate between the limits.
    if ct is None:
        lb, ub = self.joint_limit_cfgs
        if len(lb) > 0:
            traj_len = 2
            ct_np = {k: np.array([lb[k], ub[k]]) for k in lb}

    # If it is specified, parse it and extract the trajectory length.
    elif isinstance(ct, dict):
        if len(ct) > 0:
            for k in ct:
                val = np.asanyarray(ct[k]).astype(np.float64)
                if traj_len is None:
                    traj_len = len(val)
                elif traj_len != len(val):
                    raise ValueError("Trajectories must be same length")
                ct_np[k] = val
    elif isinstance(ct, (list, tuple, np.ndarray)):
        ct = np.asanyarray(ct).astype(np.float64)
        if ct.ndim == 1:
            ct = ct.reshape(-1, 1)
        if ct.ndim != 2 or ct.shape[1] != len(self.actuated_joints):
            raise ValueError("Cfg trajectory must have entry for each joint")
        ct_np = {j: ct[:, i] for i, j in enumerate(self.actuated_joints)}
    else:
        raise TypeError("Invalid type for cfg_trajectory: {}".format(type(cfg_trajectory)))

    # If there isn't a trajectory to render, just show the model and exit
    if len(ct_np) == 0 or traj_len < 2:
        self.show(use_collision=use_collision)
        return

    # Create an array of times that loops from 0 to 1 and back to 0
    fps = 30.0
    n_steps = int(loop_time * fps / 2.0)
    times = np.linspace(0.0, 1.0, n_steps)
    times = np.hstack((times, np.flip(times)))

    # Create bin edges in the range [0, 1] for each trajectory step
    bins = np.arange(traj_len) / (float(traj_len) - 1.0)

    # Compute alphas for each time
    right_inds = np.digitize(times, bins, right=True)
    right_inds[right_inds == 0] = 1
    alphas = (bins[right_inds] - times) / (bins[right_inds] - bins[right_inds - 1])

    # Create the new interpolated trajectory
    new_ct = {}
    for k in ct_np:
        new_ct[k] = alphas * ct_np[k][right_inds - 1] + (1.0 - alphas) * ct_np[k][right_inds]

    # Create the scene
    if use_collision:
        fk = self.collision_trimesh_fk()
    else:
        fk = self.visual_trimesh_fk()

    node_map = {}
    scene = pyrender.Scene()
    for tm in fk:
        pose = fk[tm]
        mesh = pyrender.Mesh.from_trimesh(tm, smooth=False)
        node = scene.add(mesh, pose=pose)
        node_map[tm] = node

    # Get base pose to focus on
    blp = self.link_fk(links=[self.base_link])[self.base_link]

    # Pop the visualizer asynchronously
    v = pyrender.Viewer(scene, run_in_thread=True, use_raymond_lighting=True, view_center=blp[:3, 3])

    # Now, run our loop
    i = 0
    while v.is_active:
        cfg = {k: new_ct[k][i] for k in new_ct}
        i = (i + 1) % len(times)

        if use_collision:
            fk = self.collision_trimesh_fk(cfg=cfg)
        else:
            fk = self.visual_trimesh_fk(cfg=cfg)

        v.render_lock.acquire()
        for mesh in fk:
            pose = fk[mesh]
            node_map[mesh].matrix = pose
        v.render_lock.release()

        time.sleep(1.0 / fps)

cfg_to_vector(cfg)

Convert a configuration dictionary into a configuration vector.

Parameters

cfg : dict or None The configuration value.

Returns

vec : (n,) float The configuration vector, or None if no actuated joints present.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def cfg_to_vector(self, cfg):
    """Convert a configuration dictionary into a configuration vector.

    Parameters
    ----------
    cfg : dict or None
        The configuration value.

    Returns
    -------
    vec : (n,) float
        The configuration vector, or None if no actuated joints present.
    """
    if cfg is None:
        if len(self.actuated_joints) > 0:
            return np.zeros(len(self.actuated_joints))
        else:
            return None
    elif isinstance(cfg, (list, tuple, np.ndarray)):
        return np.asanyarray(cfg)
    elif isinstance(cfg, dict):
        vec = np.zeros(len(self.actuated_joints))
        for i, jn in enumerate(self.actuated_joint_names):
            if jn in cfg:
                vec[i] = cfg[jn]
        return vec
    else:
        raise ValueError("Invalid configuration: {}".format(cfg))

collision_geometry_fk(cfg=None, links=None)

Computes the poses of the URDF's collision geometries using fk.

Parameters

cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only geometries from these links will be in the returned map. If not specified, all links are returned.

Returns

fk : dict A map from :class:Geometry objects that are part of the collision elements of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def collision_geometry_fk(self, cfg=None, links=None):
    """Computes the poses of the URDF's collision geometries using fk.

    Parameters
    ----------
    cfg : dict or (n), float
        A map from joints or joint names to configuration values for
        each joint, or a list containing a value for each actuated joint
        in sorted order from the base link.
        If not specified, all joints are assumed to be in their default
        configurations.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only geometries from these links will be in the returned map.
        If not specified, all links are returned.

    Returns
    -------
    fk : dict
        A map from :class:`Geometry` objects that are part of the collision
        elements of the specified links to the 4x4 homogenous transform
        matrices that position them relative to the base link's frame.
    """
    lfk = self.link_fk(cfg=cfg, links=links)

    fk = OrderedDict()
    for link in lfk:
        for collision in link.collisions:
            fk[collision] = lfk[link].dot(collision.origin)
    return fk

collision_geometry_fk_batch(cfgs=None, links=None)

Computes the poses of the URDF's collision geometries using fk.

Parameters

cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of n configuration vectors, each of which has a vector with an entry for each actuated joint. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only geometries from these links will be in the returned map. If not specified, all links are returned.

Returns

fk : dict A map from :class:Geometry objects that are part of the collision elements of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def collision_geometry_fk_batch(self, cfgs=None, links=None):
    """Computes the poses of the URDF's collision geometries using fk.

    Parameters
    ----------
    cfgs : dict, list of dict, or (n,m), float
        One of the following: (A) a map from joints or joint names to vectors
        of joint configuration values, (B) a list of maps from joints or joint names
        to single configuration values, or (C) a list of ``n`` configuration vectors,
        each of which has a vector with an entry for each actuated joint.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only geometries from these links will be in the returned map.
        If not specified, all links are returned.

    Returns
    -------
    fk : dict
        A map from :class:`Geometry` objects that are part of the collision
        elements of the specified links to the 4x4 homogenous transform
        matrices that position them relative to the base link's frame.
    """
    lfk = self.link_fk_batch(cfgs=cfgs, links=links)

    fk = OrderedDict()
    for link in lfk:
        for collision in link.collisions:
            fk[collision] = np.matmul(lfk[link], collision.origin)
    return fk

collision_trimesh_fk(cfg=None, links=None)

Computes the poses of the URDF's collision trimeshes using fk.

Parameters

cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only trimeshes from these links will be in the returned map. If not specified, all links are returned.

Returns

fk : dict A map from :class:~trimesh.base.Trimesh objects that are part of the collision geometry of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def collision_trimesh_fk(self, cfg=None, links=None):
    """Computes the poses of the URDF's collision trimeshes using fk.

    Parameters
    ----------
    cfg : dict or (n), float
        A map from joints or joint names to configuration values for
        each joint, or a list containing a value for each actuated joint
        in sorted order from the base link.
        If not specified, all joints are assumed to be in their default
        configurations.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only trimeshes from these links will be in the returned map.
        If not specified, all links are returned.

    Returns
    -------
    fk : dict
        A map from :class:`~trimesh.base.Trimesh` objects that are
        part of the collision geometry of the specified links to the
        4x4 homogenous transform matrices that position them relative
        to the base link's frame.
    """
    lfk = self.link_fk(cfg=cfg, links=links)

    fk = OrderedDict()
    for link in lfk:
        pose = lfk[link]
        cm = link.collision_mesh
        if cm is not None:
            fk[cm] = pose
    return fk

collision_trimesh_fk_batch(cfgs=None, links=None)

Computes the poses of the URDF's collision trimeshes using fk.

Parameters

cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of n configuration vectors, each of which has a vector with an entry for each actuated joint. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only trimeshes from these links will be in the returned map. If not specified, all links are returned.

Returns

fk : dict A map from :class:~trimesh.base.Trimesh objects that are part of the collision geometry of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def collision_trimesh_fk_batch(self, cfgs=None, links=None):
    """Computes the poses of the URDF's collision trimeshes using fk.

    Parameters
    ----------
    cfgs : dict, list of dict, or (n,m), float
        One of the following: (A) a map from joints or joint names to vectors
        of joint configuration values, (B) a list of maps from joints or joint names
        to single configuration values, or (C) a list of ``n`` configuration vectors,
        each of which has a vector with an entry for each actuated joint.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only trimeshes from these links will be in the returned map.
        If not specified, all links are returned.

    Returns
    -------
    fk : dict
        A map from :class:`~trimesh.base.Trimesh` objects that are
        part of the collision geometry of the specified links to the
        4x4 homogenous transform matrices that position them relative
        to the base link's frame.
    """
    lfk = self.link_fk_batch(cfgs=cfgs, links=links)

    fk = OrderedDict()
    for link in lfk:
        poses = lfk[link]
        cm = link.collision_mesh
        if cm is not None:
            fk[cm] = poses
    return fk

copy(name=None, prefix='', scale=None, collision_only=False)

Make a deep copy of the URDF.

Parameters

name : str, optional A name for the new URDF. If not specified, self.name is used. prefix : str, optional A prefix to apply to all names except for the base URDF name. scale : float or (3,) float, optional A scale to apply to the URDF. collision_only : bool, optional If True, all visual geometry is redirected to the collision geometry.

Returns

copy : :class:.URDF The copied URDF.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, name=None, prefix="", scale=None, collision_only=False):
    """Make a deep copy of the URDF.

    Parameters
    ----------
    name : str, optional
        A name for the new URDF. If not specified, ``self.name`` is used.
    prefix : str, optional
        A prefix to apply to all names except for the base URDF name.
    scale : float or (3,) float, optional
        A scale to apply to the URDF.
    collision_only : bool, optional
        If True, all visual geometry is redirected to the collision geometry.

    Returns
    -------
    copy : :class:`.URDF`
        The copied URDF.
    """
    return URDF(
        name=(name if name else self.name),
        links=[v.copy(prefix, scale, collision_only) for v in self.links],
        joints=[v.copy(prefix, scale) for v in self.joints],
        transmissions=[v.copy(prefix, scale) for v in self.transmissions],
        materials=[v.copy(prefix, scale) for v in self.materials],
        other_xml=self.other_xml,
    )

join(other, link, origin=None, name=None, prefix='')

Join another URDF to this one by rigidly fixturing the two at a link.

Parameters

other : :class:.URDF Another URDF to fuze to this one. link : :class:.Link or str The link of this URDF to attach the other URDF to. origin : (4,4) float, optional The location in this URDF's link frame to attach the base link of the other URDF at. name : str, optional A name for the new URDF. prefix : str, optional If specified, all joints and links from the (other) mesh will be pre-fixed with this value to avoid name clashes.

Returns

:class:.URDF The new URDF.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def join(self, other, link, origin=None, name=None, prefix=""):
    """Join another URDF to this one by rigidly fixturing the two at a link.

    Parameters
    ----------
    other : :class:.`URDF`
        Another URDF to fuze to this one.
    link : :class:`.Link` or str
        The link of this URDF to attach the other URDF to.
    origin : (4,4) float, optional
        The location in this URDF's link frame to attach the base link of the other
        URDF at.
    name : str, optional
        A name for the new URDF.
    prefix : str, optional
        If specified, all joints and links from the (other) mesh will be pre-fixed
        with this value to avoid name clashes.

    Returns
    -------
    :class:`.URDF`
        The new URDF.
    """
    myself = self.copy()
    other = other.copy(prefix=prefix)

    # Validate
    link_names = set(myself.link_map.keys())
    other_link_names = set(other.link_map.keys())
    if len(link_names.intersection(other_link_names)) > 0:
        raise ValueError("Cannot merge two URDFs with shared link names")

    joint_names = set(myself.joint_map.keys())
    other_joint_names = set(other.joint_map.keys())
    if len(joint_names.intersection(other_joint_names)) > 0:
        raise ValueError("Cannot merge two URDFs with shared joint names")

    links = myself.links + other.links
    joints = myself.joints + other.joints
    transmissions = myself.transmissions + other.transmissions
    materials = myself.materials + other.materials

    if name is None:
        name = self.name

    # Create joint that links the two rigidly
    joints.append(
        Joint(
            name="{}_join_{}{}_joint".format(self.name, prefix, other.name),
            joint_type="fixed",
            parent=link if isinstance(link, str) else link.name,
            child=other.base_link.name,
            origin=origin,
        )
    )

    return URDF(name=name, links=links, joints=joints, transmissions=transmissions, materials=materials)

Computes the poses of the URDF's links via forward kinematics.

cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. link : str or :class:.Link A single link or link name to return a pose for. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only these links will be in the returned map. If neither link nor links are specified all links are returned. use_names : bool If True, the returned dictionary will have keys that are string link names rather than the links themselves.

fk : dict or (4,4) float A map from links to 4x4 homogenous transform matrices that position them relative to the base link's frame, or a single 4x4 matrix if link is specified.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def link_fk(self, cfg=None, link=None, links=None, use_names=False):
    """Computes the poses of the URDF's links via forward kinematics.

    Parameters
    ----------
    cfg : dict or (n), float
        A map from joints or joint names to configuration values for
        each joint, or a list containing a value for each actuated joint
        in sorted order from the base link.
        If not specified, all joints are assumed to be in their default
        configurations.
    link : str or :class:`.Link`
        A single link or link name to return a pose for.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only these links will be in the returned map. If neither
        link nor links are specified all links are returned.
    use_names : bool
        If True, the returned dictionary will have keys that are string
        link names rather than the links themselves.

    Returns
    -------
    fk : dict or (4,4) float
        A map from links to 4x4 homogenous transform matrices that
        position them relative to the base link's frame, or a single
        4x4 matrix if ``link`` is specified.
    """
    # Process config value
    joint_cfg = self._process_cfg(cfg)

    # Process link set
    link_set = set()
    if link is not None:
        if isinstance(link, six.string_types):
            link_set.add(self._link_map[link])
        elif isinstance(link, Link):
            link_set.add(link)
    elif links is not None:
        for lnk in links:
            if isinstance(lnk, six.string_types):
                link_set.add(self._link_map[lnk])
            elif isinstance(lnk, Link):
                link_set.add(lnk)
            else:
                raise TypeError("Got object of type {} in links list".format(type(lnk)))
    else:
        link_set = self.links

    # Compute forward kinematics in reverse topological order
    fk = OrderedDict()
    for lnk in self._reverse_topo:
        if lnk not in link_set:
            continue
        pose = np.eye(4, dtype=np.float64)
        path = self._paths_to_base[lnk]
        for i in range(len(path) - 1):
            child = path[i]
            parent = path[i + 1]
            joint = self._G.get_edge_data(child, parent)["joint"]

            cfg = None
            if joint.mimic is not None:
                mimic_joint = self._joint_map[joint.mimic.joint]
                if mimic_joint in joint_cfg:
                    cfg = joint_cfg[mimic_joint]
                    cfg = joint.mimic.multiplier * cfg + joint.mimic.offset
            elif joint in joint_cfg:
                cfg = joint_cfg[joint]
            pose = joint.get_child_pose(cfg).dot(pose)

            # Check existing FK to see if we can exit early
            if parent in fk:
                pose = fk[parent].dot(pose)
                break
        fk[lnk] = pose

    if link:
        if isinstance(link, six.string_types):
            return fk[self._link_map[link]]
        else:
            return fk[link]
    if use_names:
        return {ell.name: fk[ell] for ell in fk}
    return fk

Computes the poses of the URDF's links via forward kinematics in a batch.

cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of n configuration vectors, each of which has a vector with an entry for each actuated joint. link : str or :class:.Link A single link or link name to return a pose for. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only these links will be in the returned map. If neither link nor links are specified all links are returned. use_names : bool If True, the returned dictionary will have keys that are string link names rather than the links themselves.

fk : dict or (n,4,4) float A map from links to a (n,4,4) vector of homogenous transform matrices that position the links relative to the base link's frame, or a single nx4x4 matrix if link is specified.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def link_fk_batch(self, cfgs=None, link=None, links=None, use_names=False):
    """Computes the poses of the URDF's links via forward kinematics in a batch.

    Parameters
    ----------
    cfgs : dict, list of dict, or (n,m), float
        One of the following: (A) a map from joints or joint names to vectors
        of joint configuration values, (B) a list of maps from joints or joint names
        to single configuration values, or (C) a list of ``n`` configuration vectors,
        each of which has a vector with an entry for each actuated joint.
    link : str or :class:`.Link`
        A single link or link name to return a pose for.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only these links will be in the returned map. If neither
        link nor links are specified all links are returned.
    use_names : bool
        If True, the returned dictionary will have keys that are string
        link names rather than the links themselves.

    Returns
    -------
    fk : dict or (n,4,4) float
        A map from links to a (n,4,4) vector of homogenous transform matrices that
        position the links relative to the base link's frame, or a single
        nx4x4 matrix if ``link`` is specified.
    """
    joint_cfgs, n_cfgs = self._process_cfgs(cfgs)

    # Process link set
    link_set = set()
    if link is not None:
        if isinstance(link, six.string_types):
            link_set.add(self._link_map[link])
        elif isinstance(link, Link):
            link_set.add(link)
    elif links is not None:
        for lnk in links:
            if isinstance(lnk, six.string_types):
                link_set.add(self._link_map[lnk])
            elif isinstance(lnk, Link):
                link_set.add(lnk)
            else:
                raise TypeError("Got object of type {} in links list".format(type(lnk)))
    else:
        link_set = self.links

    # Compute FK mapping each link to a vector of matrices, one matrix per cfg
    fk = OrderedDict()
    for lnk in self._reverse_topo:
        if lnk not in link_set:
            continue
        poses = np.tile(np.eye(4, dtype=np.float64), (n_cfgs, 1, 1))
        path = self._paths_to_base[lnk]
        for i in range(len(path) - 1):
            child = path[i]
            parent = path[i + 1]
            joint = self._G.get_edge_data(child, parent)["joint"]

            cfg_vals = None
            if joint.mimic is not None:
                mimic_joint = self._joint_map[joint.mimic.joint]
                if mimic_joint in joint_cfgs:
                    cfg_vals = joint_cfgs[mimic_joint]
                    cfg_vals = joint.mimic.multiplier * cfg_vals + joint.mimic.offset
            elif joint in joint_cfgs:
                cfg_vals = joint_cfgs[joint]
            poses = np.matmul(joint.get_child_poses(cfg_vals, n_cfgs), poses)

            if parent in fk:
                poses = np.matmul(fk[parent], poses)
                break
        fk[lnk] = poses

    if link:
        if isinstance(link, six.string_types):
            return fk[self._link_map[link]]
        else:
            return fk[link]
    if use_names:
        return {ell.name: fk[ell] for ell in fk}
    return fk

load(file_obj) staticmethod

Load a URDF from a file.

Parameters

file_obj : str or file-like object The file to load the URDF from. Should be the path to the .urdf XML file. Any paths in the URDF should be specified as relative paths to the .urdf file instead of as ROS resources.

Returns

urdf : :class:.URDF The parsed URDF.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
@staticmethod
def load(file_obj):
    """Load a URDF from a file.

    Parameters
    ----------
    file_obj : str or file-like object
        The file to load the URDF from. Should be the path to the
        ``.urdf`` XML file. Any paths in the URDF should be specified
        as relative paths to the ``.urdf`` file instead of as ROS
        resources.

    Returns
    -------
    urdf : :class:`.URDF`
        The parsed URDF.
    """
    if isinstance(file_obj, six.string_types):
        if os.path.isfile(file_obj):
            parser = ET.XMLParser(remove_comments=True, remove_blank_text=True)
            tree = ET.parse(file_obj, parser=parser)
            path, _ = os.path.split(file_obj)
        else:
            raise ValueError("{} is not a file".format(file_obj))
    else:
        parser = ET.XMLParser(remove_comments=True, remove_blank_text=True)
        tree = ET.parse(file_obj, parser=parser)
        path, _ = os.path.split(file_obj.name)

    node = tree.getroot()
    return URDF._from_xml(node, path)

save(file_obj)

Save this URDF to a file.

Parameters

file_obj : str or file-like object The file to save the URDF to. Should be the path to the .urdf XML file. Any paths in the URDF should be specified as relative paths to the .urdf file instead of as ROS resources.

Returns

urdf : :class:.URDF The parsed URDF.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def save(self, file_obj):
    """Save this URDF to a file.

    Parameters
    ----------
    file_obj : str or file-like object
        The file to save the URDF to. Should be the path to the
        ``.urdf`` XML file. Any paths in the URDF should be specified
        as relative paths to the ``.urdf`` file instead of as ROS
        resources.

    Returns
    -------
    urdf : :class:`.URDF`
        The parsed URDF.
    """
    if isinstance(file_obj, six.string_types):
        path, _ = os.path.split(file_obj)
    else:
        path, _ = os.path.split(os.path.realpath(file_obj.name))

    node = self._to_xml(None, path)
    tree = ET.ElementTree(node)
    tree.write(file_obj, pretty_print=True, xml_declaration=True, encoding="utf-8")

show(cfg=None, use_collision=False)

Visualize the URDF in a given configuration.

Parameters

cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. use_collision : bool If True, the collision geometry is visualized instead of the visual geometry.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def show(self, cfg=None, use_collision=False):
    """Visualize the URDF in a given configuration.

    Parameters
    ----------
    cfg : dict or (n), float
        A map from joints or joint names to configuration values for
        each joint, or a list containing a value for each actuated joint
        in sorted order from the base link.
        If not specified, all joints are assumed to be in their default
        configurations.
    use_collision : bool
        If True, the collision geometry is visualized instead of
        the visual geometry.
    """
    import pyrender  # Save pyrender import for here for CI

    if use_collision:
        fk = self.collision_trimesh_fk(cfg=cfg)
    else:
        fk = self.visual_trimesh_fk(cfg=cfg)

    scene = pyrender.Scene()
    for tm in fk:
        pose = fk[tm]
        mesh = pyrender.Mesh.from_trimesh(tm, smooth=False)
        scene.add(mesh, pose=pose)
    pyrender.Viewer(scene, use_raymond_lighting=True)

visual_geometry_fk(cfg=None, links=None)

Computes the poses of the URDF's visual geometries using fk.

Parameters

cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only geometries from these links will be in the returned map. If not specified, all links are returned.

Returns

fk : dict A map from :class:Geometry objects that are part of the visual elements of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def visual_geometry_fk(self, cfg=None, links=None):
    """Computes the poses of the URDF's visual geometries using fk.

    Parameters
    ----------
    cfg : dict or (n), float
        A map from joints or joint names to configuration values for
        each joint, or a list containing a value for each actuated joint
        in sorted order from the base link.
        If not specified, all joints are assumed to be in their default
        configurations.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only geometries from these links will be in the returned map.
        If not specified, all links are returned.

    Returns
    -------
    fk : dict
        A map from :class:`Geometry` objects that are part of the visual
        elements of the specified links to the 4x4 homogenous transform
        matrices that position them relative to the base link's frame.
    """
    lfk = self.link_fk(cfg=cfg, links=links)

    fk = OrderedDict()
    for link in lfk:
        for visual in link.visuals:
            fk[visual.geometry] = lfk[link].dot(visual.origin)
    return fk

visual_geometry_fk_batch(cfgs=None, links=None)

Computes the poses of the URDF's visual geometries using fk.

Parameters

cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of n configuration vectors, each of which has a vector with an entry for each actuated joint. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only geometries from these links will be in the returned map. If not specified, all links are returned.

Returns

fk : dict A map from :class:Geometry objects that are part of the visual elements of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def visual_geometry_fk_batch(self, cfgs=None, links=None):
    """Computes the poses of the URDF's visual geometries using fk.

    Parameters
    ----------
    cfgs : dict, list of dict, or (n,m), float
        One of the following: (A) a map from joints or joint names to vectors
        of joint configuration values, (B) a list of maps from joints or joint names
        to single configuration values, or (C) a list of ``n`` configuration vectors,
        each of which has a vector with an entry for each actuated joint.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only geometries from these links will be in the returned map.
        If not specified, all links are returned.

    Returns
    -------
    fk : dict
        A map from :class:`Geometry` objects that are part of the visual
        elements of the specified links to the 4x4 homogenous transform
        matrices that position them relative to the base link's frame.
    """
    lfk = self.link_fk_batch(cfgs=cfgs, links=links)

    fk = OrderedDict()
    for link in lfk:
        for visual in link.visuals:
            fk[visual.geometry] = np.matmul(lfk[link], visual.origin)
    return fk

visual_trimesh_fk(cfg=None, links=None)

Computes the poses of the URDF's visual trimeshes using fk.

Parameters

cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only trimeshes from these links will be in the returned map. If not specified, all links are returned.

Returns

fk : dict A map from :class:~trimesh.base.Trimesh objects that are part of the visual geometry of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def visual_trimesh_fk(self, cfg=None, links=None):
    """Computes the poses of the URDF's visual trimeshes using fk.

    Parameters
    ----------
    cfg : dict or (n), float
        A map from joints or joint names to configuration values for
        each joint, or a list containing a value for each actuated joint
        in sorted order from the base link.
        If not specified, all joints are assumed to be in their default
        configurations.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only trimeshes from these links will be in the returned map.
        If not specified, all links are returned.

    Returns
    -------
    fk : dict
        A map from :class:`~trimesh.base.Trimesh` objects that are
        part of the visual geometry of the specified links to the
        4x4 homogenous transform matrices that position them relative
        to the base link's frame.
    """
    lfk = self.link_fk(cfg=cfg, links=links)

    fk = OrderedDict()
    for link in lfk:
        for visual in link.visuals:
            for mesh in visual.geometry.meshes:
                pose = lfk[link].dot(visual.origin)
                if visual.geometry.mesh is not None:
                    if visual.geometry.mesh.scale is not None:
                        S = np.eye(4, dtype=np.float64)
                        S[:3, :3] = np.diag(visual.geometry.mesh.scale)
                        pose = pose.dot(S)
                fk[mesh] = pose
    return fk

visual_trimesh_fk_batch(cfgs=None, links=None)

Computes the poses of the URDF's visual trimeshes using fk.

Parameters

cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of n configuration vectors, each of which has a vector with an entry for each actuated joint. links : list of str or list of :class:.Link The links or names of links to perform forward kinematics on. Only trimeshes from these links will be in the returned map. If not specified, all links are returned.

Returns

fk : dict A map from :class:~trimesh.base.Trimesh objects that are part of the visual geometry of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def visual_trimesh_fk_batch(self, cfgs=None, links=None):
    """Computes the poses of the URDF's visual trimeshes using fk.

    Parameters
    ----------
    cfgs : dict, list of dict, or (n,m), float
        One of the following: (A) a map from joints or joint names to vectors
        of joint configuration values, (B) a list of maps from joints or joint names
        to single configuration values, or (C) a list of ``n`` configuration vectors,
        each of which has a vector with an entry for each actuated joint.
    links : list of str or list of :class:`.Link`
        The links or names of links to perform forward kinematics on.
        Only trimeshes from these links will be in the returned map.
        If not specified, all links are returned.

    Returns
    -------
    fk : dict
        A map from :class:`~trimesh.base.Trimesh` objects that are
        part of the visual geometry of the specified links to the
        4x4 homogenous transform matrices that position them relative
        to the base link's frame.
    """
    lfk = self.link_fk_batch(cfgs=cfgs, links=links)

    fk = OrderedDict()
    for link in lfk:
        for visual in link.visuals:
            for mesh in visual.geometry.meshes:
                poses = np.matmul(lfk[link], visual.origin)
                if visual.geometry.mesh is not None:
                    if visual.geometry.mesh.scale is not None:
                        S = np.eye(4, dtype=np.float64)
                        S[:3, :3] = np.diag(visual.geometry.mesh.scale)
                        poses = np.matmul(poses, S)
                fk[mesh] = poses
    return fk

URDFType

Bases: object

Abstract base class for all URDF types.

This has useful class methods for automatic parsing/unparsing of XML trees.

There are three overridable class variables:

  • _ATTRIBS - This is a dictionary mapping attribute names to a tuple, (type, required) where type is the Python type for the attribute and required is a boolean stating whether the attribute is required to be present.
  • _ELEMENTS - This is a dictionary mapping element names to a tuple, (type, required, multiple) where type is the Python type for the element, required is a boolean stating whether the element is required to be present, and multiple is a boolean indicating whether multiple elements of this type could be present. Elements are child nodes in the XML tree, and their type must be a subclass of :class:.URDFType.
  • _TAG - This is a string that represents the XML tag for the node containing this type of object.
Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class URDFType(object):
    """Abstract base class for all URDF types.

    This has useful class methods for automatic parsing/unparsing
    of XML trees.

    There are three overridable class variables:

    - ``_ATTRIBS`` - This is a dictionary mapping attribute names to a tuple,
      ``(type, required)`` where ``type`` is the Python type for the
      attribute and ``required`` is a boolean stating whether the attribute
      is required to be present.
    - ``_ELEMENTS`` - This is a dictionary mapping element names to a tuple,
      ``(type, required, multiple)`` where ``type`` is the Python type for the
      element, ``required`` is a boolean stating whether the element
      is required to be present, and ``multiple`` is a boolean indicating
      whether multiple elements of this type could be present.
      Elements are child nodes in the XML tree, and their type must be a
      subclass of :class:`.URDFType`.
    - ``_TAG`` - This is a string that represents the XML tag for the node
      containing this type of object.
    """

    _ATTRIBS = {}  # Map from attrib name to (type, required)
    _ELEMENTS = {}  # Map from element name to (type, required, multiple)
    _TAG = ""  # XML tag for this element

    def __init__(self):
        pass

    @classmethod
    def _parse_attrib(cls, val_type, val):
        """Parse an XML attribute into a python value.

        Parameters
        ----------
        val_type : :class:`type`
            The type of value to create.
        val : :class:`object`
            The value to parse.

        Returns
        -------
        val : :class:`object`
            The parsed attribute.
        """
        if val_type == np.ndarray:
            val = np.fromstring(val, sep=" ")
        else:
            val = val_type(val)
        return val

    @classmethod
    def _parse_simple_attribs(cls, node):
        """Parse all attributes in the _ATTRIBS array for this class.

        Parameters
        ----------
        node : :class:`lxml.etree.Element`
            The node to parse attributes for.

        Returns
        -------
        kwargs : dict
            Map from attribute name to value. If the attribute is not
            required and is not present, that attribute's name will map to
            ``None``.
        """
        kwargs = {}
        for a in cls._ATTRIBS:
            t, r = cls._ATTRIBS[a]  # t = type, r = required (bool)
            if r:
                try:
                    v = cls._parse_attrib(t, node.attrib[a])
                except Exception:
                    raise ValueError(
                        "Missing required attribute {} when parsing an object of type {}".format(a, cls.__name__)
                    )
            else:
                v = None
                if a in node.attrib:
                    v = cls._parse_attrib(t, node.attrib[a])
            kwargs[a] = v
        return kwargs

    @classmethod
    def _parse_simple_elements(cls, node, path):
        """Parse all elements in the _ELEMENTS array from the children of
        this node.

        Parameters
        ----------
        node : :class:`lxml.etree.Element`
            The node to parse children for.
        path : str
            The string path where the XML file is located (used for resolving
            the location of mesh or image files).

        Returns
        -------
        kwargs : dict
            Map from element names to the :class:`URDFType` subclass (or list,
            if ``multiple`` was set) created for that element.
        """
        kwargs = {}
        for a in cls._ELEMENTS:
            t, r, m = cls._ELEMENTS[a]
            if not m:
                v = node.find(t._TAG)
                if r or v is not None:
                    v = t._from_xml(v, path)
            else:
                vs = node.findall(t._TAG)
                if len(vs) == 0 and r:
                    raise ValueError(
                        "Missing required subelement(s) of type {} when parsing an object of type {}".format(
                            t.__name__, cls.__name__
                        )
                    )
                v = [t._from_xml(n, path) for n in vs]
            kwargs[a] = v
        return kwargs

    @classmethod
    def _parse(cls, node, path):
        """Parse all elements and attributes in the _ELEMENTS and _ATTRIBS
        arrays for a node.

        Parameters
        ----------
        node : :class:`lxml.etree.Element`
            The node to parse.
        path : str
            The string path where the XML file is located (used for resolving
            the location of mesh or image files).

        Returns
        -------
        kwargs : dict
            Map from names to Python classes created from the attributes
            and elements in the class arrays.
        """
        kwargs = cls._parse_simple_attribs(node)
        kwargs.update(cls._parse_simple_elements(node, path))
        return kwargs

    @classmethod
    def _from_xml(cls, node, path):
        """Create an instance of this class from an XML node.

        Parameters
        ----------
        node : :class:`lxml.etree.Element`
            The node to parse.
        path : str
            The string path where the XML file is located (used for resolving
            the location of mesh or image files).

        Returns
        -------
        obj : :class:`URDFType`
            An instance of this class parsed from the node.
        """
        return cls(**cls._parse(node, path))

    def _unparse_attrib(self, val_type, val):
        """Convert a Python value into a string for storage in an
        XML attribute.

        Parameters
        ----------
        val_type : :class:`type`
            The type of the Python object.
        val : :class:`object`
            The actual value.

        Returns
        -------
        s : str
            The attribute string.
        """
        if val_type == np.ndarray:
            val = np.array2string(val)[1:-1]
        else:
            val = str(val)
        return val

    def _unparse_simple_attribs(self, node):
        """Convert all Python types from the _ATTRIBS array back into attributes
        for an XML node.

        Parameters
        ----------
        node : :class:`object`
            The XML node to add the attributes to.
        """
        for a in self._ATTRIBS:
            t, r = self._ATTRIBS[a]
            v = getattr(self, a, None)
            if r or v is not None:
                node.attrib[a] = self._unparse_attrib(t, v)

    def _unparse_simple_elements(self, node, path):
        """Unparse all Python types from the _ELEMENTS array back into child
        nodes of an XML node.

        Parameters
        ----------
        node : :class:`object`
            The XML node for this object. Elements will be added as children
            of this node.
        path : str
            The string path where the XML file is being written to (used for
            writing out meshes and image files).
        """
        for a in self._ELEMENTS:
            t, r, m = self._ELEMENTS[a]
            v = getattr(self, a, None)
            if not m:
                if r or v is not None:
                    node.append(v._to_xml(node, path))
            else:
                vs = v
                for v in vs:
                    node.append(v._to_xml(node, path))

    def _unparse(self, path):
        """Create a node for this object and unparse all elements and
        attributes in the class arrays.

        Parameters
        ----------
        path : str
            The string path where the XML file is being written to (used for
            writing out meshes and image files).

        Returns
        -------
        node : :class:`lxml.etree.Element`
            The newly-created node.
        """
        node = ET.Element(self._TAG)
        self._unparse_simple_attribs(node)
        self._unparse_simple_elements(node, path)
        return node

    def _to_xml(self, parent, path):
        """Create and return an XML node for this object.

        Parameters
        ----------
        parent : :class:`lxml.etree.Element`
            The parent node that this element will eventually be added to.
            This base implementation doesn't use this information, but
            classes that override this function may use it.
        path : str
            The string path where the XML file is being written to (used for
            writing out meshes and image files).

        Returns
        -------
        node : :class:`lxml.etree.Element`
            The newly-created node.
        """
        return self._unparse(path)

Visual

Bases: URDFType

Visual properties of a link.

Parameters

geometry : :class:.Geometry The geometry of the element name : str, optional The name of the visual geometry. origin : (4,4) float, optional The pose of the visual element relative to the link frame. Defaults to identity. material : :class:.Material, optional The material of the element.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
class Visual(URDFType):
    """Visual properties of a link.

    Parameters
    ----------
    geometry : :class:`.Geometry`
        The geometry of the element
    name : str, optional
        The name of the visual geometry.
    origin : (4,4) float, optional
        The pose of the visual element relative to the link frame.
        Defaults to identity.
    material : :class:`.Material`, optional
        The material of the element.
    """

    _ATTRIBS = {"name": (str, False)}
    _ELEMENTS = {
        "geometry": (Geometry, True, False),
        "material": (Material, False, False),
    }
    _TAG = "visual"

    def __init__(self, geometry, name=None, origin=None, material=None):
        self.geometry = geometry
        self.name = name
        self.origin = origin
        self.material = material

    @property
    def geometry(self):
        """:class:`.Geometry` : The geometry of this element."""
        return self._geometry

    @geometry.setter
    def geometry(self, value):
        if not isinstance(value, Geometry):
            raise TypeError("Must set geometry with Geometry object")
        self._geometry = value

    @property
    def name(self):
        """str : The name of this visual element."""
        return self._name

    @name.setter
    def name(self, value):
        if value is not None:
            value = str(value)
        self._name = value

    @property
    def origin(self):
        """(4,4) float : The pose of this element relative to the link frame."""
        return self._origin

    @origin.setter
    def origin(self, value):
        self._origin = configure_origin(value)

    @property
    def material(self):
        """:class:`.Material` : The material for this element."""
        return self._material

    @material.setter
    def material(self, value):
        if value is not None:
            if not isinstance(value, Material):
                raise TypeError("Must set material with Material object")
        self._material = value

    @classmethod
    def _from_xml(cls, node, path):
        kwargs = cls._parse(node, path)
        kwargs["origin"] = parse_origin(node)
        return Visual(**kwargs)

    def _to_xml(self, parent, path):
        node = self._unparse(path)
        node.append(unparse_origin(self.origin))
        return node

    def copy(self, prefix="", scale=None):
        """Create a deep copy of the visual with the prefix applied to all names.

        Parameters
        ----------
        prefix : str
            A prefix to apply to all joint and link names.

        Returns
        -------
        :class:`.Visual`
            A deep copy of the visual.
        """
        origin = self.origin.copy()
        if scale is not None:
            if not isinstance(scale, (list, np.ndarray)):
                scale = np.repeat(scale, 3)
            origin[:3, 3] *= scale
        return Visual(
            geometry=self.geometry.copy(prefix=prefix, scale=scale),
            name="{}{}".format(prefix, self.name),
            origin=origin,
            material=(self.material.copy(prefix=prefix) if self.material else None),
        )

geometry property writable

:class:.Geometry : The geometry of this element.

material property writable

:class:.Material : The material for this element.

name property writable

str : The name of this visual element.

origin property writable

(4,4) float : The pose of this element relative to the link frame.

copy(prefix='', scale=None)

Create a deep copy of the visual with the prefix applied to all names.

Parameters

prefix : str A prefix to apply to all joint and link names.

Returns

:class:.Visual A deep copy of the visual.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def copy(self, prefix="", scale=None):
    """Create a deep copy of the visual with the prefix applied to all names.

    Parameters
    ----------
    prefix : str
        A prefix to apply to all joint and link names.

    Returns
    -------
    :class:`.Visual`
        A deep copy of the visual.
    """
    origin = self.origin.copy()
    if scale is not None:
        if not isinstance(scale, (list, np.ndarray)):
            scale = np.repeat(scale, 3)
        origin[:3, 3] *= scale
    return Visual(
        geometry=self.geometry.copy(prefix=prefix, scale=scale),
        name="{}{}".format(prefix, self.name),
        origin=origin,
        material=(self.material.copy(prefix=prefix) if self.material else None),
    )

configure_origin(value)

Convert a value into a 4x4 transform matrix.

Parameters

value : None, (6,) float, or (4,4) float The value to turn into the matrix. If (6,), interpreted as xyzrpy coordinates.

Returns

matrix : (4,4) float or None The created matrix.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def configure_origin(value):
    """Convert a value into a 4x4 transform matrix.

    Parameters
    ----------
    value : None, (6,) float, or (4,4) float
        The value to turn into the matrix.
        If (6,), interpreted as xyzrpy coordinates.

    Returns
    -------
    matrix : (4,4) float or None
        The created matrix.
    """
    if value is None:
        value = np.eye(4, dtype=np.float64)
    elif isinstance(value, (list, tuple, np.ndarray)):
        value = np.asanyarray(value, dtype=np.float64)
        if value.shape == (6,):
            value = xyz_rpy_to_matrix(value)
        elif value.shape != (4, 4):
            raise ValueError("Origin must be specified as a 4x4 homogenous transformation matrix")
    else:
        raise TypeError("Invalid type for origin, expect 4x4 matrix")
    return value

get_filename(base_path, file_path, makedirs=False)

Formats a file path correctly for URDF loading.

Parameters

base_path : str The base path to the URDF's folder. file_path : str The path to the file. makedirs : bool, optional If True, the directories leading to the file will be created if needed.

Returns

resolved : str The resolved filepath -- just the normal file_path if it was an absolute path, otherwise that path joined to base_path.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def get_filename(base_path, file_path, makedirs=False):
    """Formats a file path correctly for URDF loading.

    Parameters
    ----------
    base_path : str
        The base path to the URDF's folder.
    file_path : str
        The path to the file.
    makedirs : bool, optional
        If ``True``, the directories leading to the file will be created
        if needed.

    Returns
    -------
    resolved : str
        The resolved filepath -- just the normal ``file_path`` if it was an
        absolute path, otherwise that path joined to ``base_path``.
    """
    fn = file_path
    if not os.path.isabs(file_path):
        fn = os.path.join(base_path, file_path)
    if makedirs:
        d, _ = os.path.split(fn)
        if not os.path.exists(d):
            os.makedirs(d)
    return fn

load_meshes(filename)

Loads triangular meshes from a file.

Parameters

filename : str Path to the mesh file.

Returns

meshes : list of :class:~trimesh.base.Trimesh The meshes loaded from the file.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def load_meshes(filename):
    """Loads triangular meshes from a file.

    Parameters
    ----------
    filename : str
        Path to the mesh file.

    Returns
    -------
    meshes : list of :class:`~trimesh.base.Trimesh`
        The meshes loaded from the file.
    """
    meshes = trimesh.load(filename)

    # If we got a scene, dump the meshes
    if isinstance(meshes, trimesh.Scene):
        meshes = list(meshes.dump())
        meshes = [g for g in meshes if isinstance(g, trimesh.Trimesh)]

    if isinstance(meshes, (list, tuple, set)):
        meshes = list(meshes)
        if len(meshes) == 0:
            raise ValueError("At least one mesh must be pmeshesent in file")
        for r in meshes:
            if not isinstance(r, trimesh.Trimesh):
                raise TypeError("Could not load meshes from file")
    elif isinstance(meshes, trimesh.Trimesh):
        meshes = [meshes]
    else:
        raise ValueError("Unable to load mesh from file")

    return meshes

matrix_to_rpy(R, solution=1)

Convert a 3x3 transform matrix to roll-pitch-yaw coordinates.

The roll-pitchRyaw axes in a typical URDF are defined as a rotation of r radians around the x-axis followed by a rotation of p radians around the y-axis followed by a rotation of y radians around the z-axis. These are the Z1-Y2-X3 Tait-Bryan angles. See Wikipedia_ for more information.

.. _Wikipedia: https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix

There are typically two possible roll-pitch-yaw coordinates that could have created a given rotation matrix. Specify solution=1 for the first one and solution=2 for the second one.

Parameters

R : (3,3) float A 3x3 homogenous rotation matrix. solution : int Either 1 or 2, indicating which solution to return.

Returns

coords : (3,) float The roll-pitch-yaw coordinates in order (x-rot, y-rot, z-rot).

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def matrix_to_rpy(R, solution=1):
    """Convert a 3x3 transform matrix to roll-pitch-yaw coordinates.

    The roll-pitchRyaw axes in a typical URDF are defined as a
    rotation of ``r`` radians around the x-axis followed by a rotation of
    ``p`` radians around the y-axis followed by a rotation of ``y`` radians
    around the z-axis. These are the Z1-Y2-X3 Tait-Bryan angles. See
    Wikipedia_ for more information.

    .. _Wikipedia: https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix

    There are typically two possible roll-pitch-yaw coordinates that could have
    created a given rotation matrix. Specify ``solution=1`` for the first one
    and ``solution=2`` for the second one.

    Parameters
    ----------
    R : (3,3) float
        A 3x3 homogenous rotation matrix.
    solution : int
        Either 1 or 2, indicating which solution to return.

    Returns
    -------
    coords : (3,) float
        The roll-pitch-yaw coordinates in order (x-rot, y-rot, z-rot).
    """
    R = np.asanyarray(R, dtype=np.float64)
    r = 0.0
    p = 0.0
    y = 0.0

    if np.abs(R[2, 0]) >= 1.0 - 1e-12:
        y = 0.0
        if R[2, 0] < 0:
            p = np.pi / 2
            r = np.arctan2(R[0, 1], R[0, 2])
        else:
            p = -np.pi / 2
            r = np.arctan2(-R[0, 1], -R[0, 2])
    else:
        if solution == 1:
            p = -np.arcsin(R[2, 0])
        else:
            p = np.pi + np.arcsin(R[2, 0])
        r = np.arctan2(R[2, 1] / np.cos(p), R[2, 2] / np.cos(p))
        y = np.arctan2(R[1, 0] / np.cos(p), R[0, 0] / np.cos(p))

    return np.array([r, p, y], dtype=np.float64)

matrix_to_xyz_rpy(matrix)

Convert a 4x4 homogenous matrix to xyzrpy coordinates.

Parameters

matrix : (4,4) float The homogenous transform matrix.

Returns

xyz_rpy : (6,) float The xyz_rpy vector.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def matrix_to_xyz_rpy(matrix):
    """Convert a 4x4 homogenous matrix to xyzrpy coordinates.

    Parameters
    ----------
    matrix : (4,4) float
        The homogenous transform matrix.

    Returns
    -------
    xyz_rpy : (6,) float
        The xyz_rpy vector.
    """
    xyz = matrix[:3, 3]
    rpy = matrix_to_rpy(matrix[:3, :3])
    return np.hstack((xyz, rpy))

parse_origin(node)

Find the origin subelement of an XML node and convert it into a 4x4 homogenous transformation matrix.

Parameters

node : :classlxml.etree.Element An XML node which (optionally) has a child node with the origin tag.

Returns

matrix : (4,4) float The 4x4 homogneous transform matrix that corresponds to this node's origin child. Defaults to the identity matrix if no origin child was found.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def parse_origin(node):
    """Find the ``origin`` subelement of an XML node and convert it
    into a 4x4 homogenous transformation matrix.

    Parameters
    ----------
    node : :class`lxml.etree.Element`
        An XML node which (optionally) has a child node with the ``origin``
        tag.

    Returns
    -------
    matrix : (4,4) float
        The 4x4 homogneous transform matrix that corresponds to this node's
        ``origin`` child. Defaults to the identity matrix if no ``origin``
        child was found.
    """
    matrix = np.eye(4, dtype=np.float64)
    origin_node = node.find("origin")
    if origin_node is not None:
        if "xyz" in origin_node.attrib:
            matrix[:3, 3] = np.fromstring(origin_node.attrib["xyz"], sep=" ")
        if "rpy" in origin_node.attrib:
            rpy = np.fromstring(origin_node.attrib["rpy"], sep=" ")
            matrix[:3, :3] = rpy_to_matrix(rpy)
    return matrix

rpy_to_matrix(coords)

Convert roll-pitch-yaw coordinates to a 3x3 homogenous rotation matrix.

The roll-pitch-yaw axes in a typical URDF are defined as a rotation of r radians around the x-axis followed by a rotation of p radians around the y-axis followed by a rotation of y radians around the z-axis. These are the Z1-Y2-X3 Tait-Bryan angles. See Wikipedia_ for more information.

.. _Wikipedia: https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix

Parameters

coords : (3,) float The roll-pitch-yaw coordinates in order (x-rot, y-rot, z-rot).

Returns

R : (3,3) float The corresponding homogenous 3x3 rotation matrix.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def rpy_to_matrix(coords):
    """Convert roll-pitch-yaw coordinates to a 3x3 homogenous rotation matrix.

    The roll-pitch-yaw axes in a typical URDF are defined as a
    rotation of ``r`` radians around the x-axis followed by a rotation of
    ``p`` radians around the y-axis followed by a rotation of ``y`` radians
    around the z-axis. These are the Z1-Y2-X3 Tait-Bryan angles. See
    Wikipedia_ for more information.

    .. _Wikipedia: https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix

    Parameters
    ----------
    coords : (3,) float
        The roll-pitch-yaw coordinates in order (x-rot, y-rot, z-rot).

    Returns
    -------
    R : (3,3) float
        The corresponding homogenous 3x3 rotation matrix.
    """
    coords = np.asanyarray(coords, dtype=np.float64)
    c3, c2, c1 = np.cos(coords)
    s3, s2, s1 = np.sin(coords)

    return np.array(
        [
            [c1 * c2, (c1 * s2 * s3) - (c3 * s1), (s1 * s3) + (c1 * c3 * s2)],
            [c2 * s1, (c1 * c3) + (s1 * s2 * s3), (c3 * s1 * s2) - (c1 * s3)],
            [-s2, c2 * s3, c2 * c3],
        ],
        dtype=np.float64,
    )

unparse_origin(matrix)

Turn a 4x4 homogenous matrix into an origin XML node.

Parameters

matrix : (4,4) float The 4x4 homogneous transform matrix to convert into an origin XML node.

Returns

node : :classlxml.etree.Element An XML node whose tag is origin. The node has two attributes:

- ``xyz`` - A string with three space-delimited floats representing
  the translation of the origin.
- ``rpy`` - A string with three space-delimited floats representing
  the rotation of the origin.
Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def unparse_origin(matrix):
    """Turn a 4x4 homogenous matrix into an ``origin`` XML node.

    Parameters
    ----------
    matrix : (4,4) float
        The 4x4 homogneous transform matrix to convert into an ``origin``
        XML node.

    Returns
    -------
    node : :class`lxml.etree.Element`
        An XML node whose tag is ``origin``. The node has two attributes:

        - ``xyz`` - A string with three space-delimited floats representing
          the translation of the origin.
        - ``rpy`` - A string with three space-delimited floats representing
          the rotation of the origin.
    """
    node = ET.Element("origin")
    node.attrib["xyz"] = "{} {} {}".format(*matrix[:3, 3])
    node.attrib["rpy"] = "{} {} {}".format(*matrix_to_rpy(matrix[:3, :3]))
    return node

xyz_rpy_to_matrix(xyz_rpy)

Convert xyz_rpy coordinates to a 4x4 homogenous matrix.

Parameters

xyz_rpy : (6,) float The xyz_rpy vector.

Returns

matrix : (4,4) float The homogenous transform matrix.

Source code in OmniGibson/omnigibson/utils/urdfpy_utils.py
def xyz_rpy_to_matrix(xyz_rpy):
    """Convert xyz_rpy coordinates to a 4x4 homogenous matrix.

    Parameters
    ----------
    xyz_rpy : (6,) float
        The xyz_rpy vector.

    Returns
    -------
    matrix : (4,4) float
        The homogenous transform matrix.
    """
    matrix = np.eye(4, dtype=np.float64)
    matrix[:3, 3] = xyz_rpy[:3]
    matrix[:3, :3] = rpy_to_matrix(xyz_rpy[3:])
    return matrix