Skip to content

behavior_robot

BRPart

Bases: ABC

This is the interface that all BehaviorRobot eef parts must implement.

Source code in omnigibson/robots/behavior_robot.py
class BRPart(ABC):
    """This is the interface that all BehaviorRobot eef parts must implement."""

    def __init__(self, name: str, parent: BehaviorRobot, prim_path: str, eef_type: str, offset_to_body: List[float]) -> None:
        """
        Create an object instance with the minimum information of class ID and rendering parameters.

        Args:
            name (str): unique name of this BR part
            parent (BehaviorRobot): the parent BR object
            prim_path (str): prim path to the root link of the eef
            eef_type (str): type of eef. One of hand, head
            offset_to_body (List[float]): relative POSITION offset between the rz link and the eef link.
        """
        self.name = name
        self.parent = parent
        self.prim_path = prim_path
        self.eef_type = eef_type
        self.offset_to_body = offset_to_body

        self.ghost_hand = None
        self._root_link = None

    def load(self) -> None:
        self._root_link = self.parent.links[self.prim_path]
        # setup ghost hand
        if self.eef_type == "hand" and self.parent._use_ghost_hands:
            gh_name = f"ghost_hand_{self.name}"
            self.ghost_hand = USDObject(
                prim_path=f"/World/{gh_name}",
                usd_path=os.path.join(gm.ASSET_PATH, f"models/behavior_robot/usd/{gh_name}.usd"),
                name=gh_name,
                scale=0.001,
                visible=False,
                visual_only=True,
            )
            og.sim.import_object(self.ghost_hand)

    @property
    def local_position_orientation(self) -> Tuple[Iterable[float], Iterable[float]]:
        """
        Get local position and orientation w.r.t. to the body
        Returns:
            Tuple[Array[x, y, z], Array[x, y, z, w]]

        """
        return T.relative_pose_transform(*self.get_position_orientation(), *self.parent.get_position_orientation())

    def get_position_orientation(self) -> Tuple[Iterable[float], Iterable[float]]:
        """
        Get position and orientation in the world space
        Returns:
            Tuple[Array[x, y, z], Array[x, y, z, w]]
        """
        return self._root_link.get_position_orientation()

    def set_position_orientation(self, pos: Iterable[float], orn: Iterable[float]) -> None:
        """
        Call back function to set the base's position
        """
        self.parent.joints[f"{self.name}_x_joint"].set_pos(pos[0], drive=False)
        self.parent.joints[f"{self.name}_y_joint"].set_pos(pos[1], drive=False)
        self.parent.joints[f"{self.name}_z_joint"].set_pos(pos[2], drive=False)
        self.parent.joints[f"{self.name}_rx_joint"].set_pos(orn[0], drive=False)
        self.parent.joints[f"{self.name}_ry_joint"].set_pos(orn[1], drive=False)
        self.parent.joints[f"{self.name}_rz_joint"].set_pos(orn[2], drive=False)

    def update_ghost_hands(self, pos: Iterable[float], orn: Iterable[float]) -> None:
        """
        Updates ghost hand to track real hand and displays it if the real and virtual hands are too far apart.
        Args:
            pos (Iterable[float]): list of positions [x, y, z]
            orn (Iterable[float]): list of rotations [x, y, z, w]
        """
        assert self.eef_type == "hand", "ghost hand is only valid for BR hand!"
        # Ghost hand tracks real hand whether it is hidden or not
        self.ghost_hand.set_position_orientation(pos, orn)

        # If distance between hand and controller is greater than threshold,
        # ghost hand appears
        dist_to_real_controller = np.linalg.norm(pos - self.get_position_orientation()[0])
        should_visible = dist_to_real_controller > m.HAND_GHOST_HAND_APPEAR_THRESHOLD

        # Only toggle visibility if we are transition from hidden to unhidden, or the other way around
        if self.ghost_hand.visible is not should_visible:
            self.ghost_hand.visible = should_visible

local_position_orientation: Tuple[Iterable[float], Iterable[float]] property

Get local position and orientation w.r.t. to the body Returns: Tuple[Array[x, y, z], Array[x, y, z, w]]

__init__(name, parent, prim_path, eef_type, offset_to_body)

Create an object instance with the minimum information of class ID and rendering parameters.

Parameters:

Name Type Description Default
name str

unique name of this BR part

required
parent BehaviorRobot

the parent BR object

required
prim_path str

prim path to the root link of the eef

required
eef_type str

type of eef. One of hand, head

required
offset_to_body List[float]

relative POSITION offset between the rz link and the eef link.

required
Source code in omnigibson/robots/behavior_robot.py
def __init__(self, name: str, parent: BehaviorRobot, prim_path: str, eef_type: str, offset_to_body: List[float]) -> None:
    """
    Create an object instance with the minimum information of class ID and rendering parameters.

    Args:
        name (str): unique name of this BR part
        parent (BehaviorRobot): the parent BR object
        prim_path (str): prim path to the root link of the eef
        eef_type (str): type of eef. One of hand, head
        offset_to_body (List[float]): relative POSITION offset between the rz link and the eef link.
    """
    self.name = name
    self.parent = parent
    self.prim_path = prim_path
    self.eef_type = eef_type
    self.offset_to_body = offset_to_body

    self.ghost_hand = None
    self._root_link = None

get_position_orientation()

Get position and orientation in the world space Returns: Tuple[Array[x, y, z], Array[x, y, z, w]]

Source code in omnigibson/robots/behavior_robot.py
def get_position_orientation(self) -> Tuple[Iterable[float], Iterable[float]]:
    """
    Get position and orientation in the world space
    Returns:
        Tuple[Array[x, y, z], Array[x, y, z, w]]
    """
    return self._root_link.get_position_orientation()

set_position_orientation(pos, orn)

Call back function to set the base's position

Source code in omnigibson/robots/behavior_robot.py
def set_position_orientation(self, pos: Iterable[float], orn: Iterable[float]) -> None:
    """
    Call back function to set the base's position
    """
    self.parent.joints[f"{self.name}_x_joint"].set_pos(pos[0], drive=False)
    self.parent.joints[f"{self.name}_y_joint"].set_pos(pos[1], drive=False)
    self.parent.joints[f"{self.name}_z_joint"].set_pos(pos[2], drive=False)
    self.parent.joints[f"{self.name}_rx_joint"].set_pos(orn[0], drive=False)
    self.parent.joints[f"{self.name}_ry_joint"].set_pos(orn[1], drive=False)
    self.parent.joints[f"{self.name}_rz_joint"].set_pos(orn[2], drive=False)

update_ghost_hands(pos, orn)

Updates ghost hand to track real hand and displays it if the real and virtual hands are too far apart. Args: pos (Iterable[float]): list of positions [x, y, z] orn (Iterable[float]): list of rotations [x, y, z, w]

Source code in omnigibson/robots/behavior_robot.py
def update_ghost_hands(self, pos: Iterable[float], orn: Iterable[float]) -> None:
    """
    Updates ghost hand to track real hand and displays it if the real and virtual hands are too far apart.
    Args:
        pos (Iterable[float]): list of positions [x, y, z]
        orn (Iterable[float]): list of rotations [x, y, z, w]
    """
    assert self.eef_type == "hand", "ghost hand is only valid for BR hand!"
    # Ghost hand tracks real hand whether it is hidden or not
    self.ghost_hand.set_position_orientation(pos, orn)

    # If distance between hand and controller is greater than threshold,
    # ghost hand appears
    dist_to_real_controller = np.linalg.norm(pos - self.get_position_orientation()[0])
    should_visible = dist_to_real_controller > m.HAND_GHOST_HAND_APPEAR_THRESHOLD

    # Only toggle visibility if we are transition from hidden to unhidden, or the other way around
    if self.ghost_hand.visible is not should_visible:
        self.ghost_hand.visible = should_visible

BehaviorRobot

Bases: ManipulationRobot, LocomotionRobot, ActiveCameraRobot

A humanoid robot that can be used in VR as an avatar. It has two hands, a body and a head with two cameras.

Source code in omnigibson/robots/behavior_robot.py
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
class BehaviorRobot(ManipulationRobot, LocomotionRobot, ActiveCameraRobot):
    """
    A humanoid robot that can be used in VR as an avatar. It has two hands, a body and a head with two cameras.
    """

    def __init__(
            self,
            # Shared kwargs in hierarchy
            name,
            prim_path=None,
            uuid=None,
            scale=None,
            visible=True,
            visual_only=False,
            self_collisions=True,
            load_config=None,

            # Unique to USDObject hierarchy
            abilities=None,

            # Unique to ControllableObject hierarchy
            control_freq=None,
            controller_config=None,
            action_type="continuous",
            action_normalize=False,
            reset_joint_pos=None,

            # Unique to BaseRobot
            obs_modalities="rgb",
            proprio_obs="default",

            # Unique to ManipulationRobot
            grasping_mode="assisted",

            # unique to BehaviorRobot
            use_ghost_hands=True,

            **kwargs
    ):
        """
        Initializes BehaviorRobot
        Args:
            use_ghost_hands (bool): whether to show ghost hand when the robot hand is too far away from the controller
        """

        super(BehaviorRobot, self).__init__(
            prim_path=prim_path,
            name=name,
            uuid=uuid,
            scale=scale,
            visible=visible,
            fixed_base=True,
            visual_only=visual_only,
            self_collisions=self_collisions,
            load_config=load_config,
            abilities=abilities,
            control_freq=control_freq,
            controller_config=controller_config,
            action_type=action_type,
            action_normalize=action_normalize,
            reset_joint_pos=reset_joint_pos,
            obs_modalities=obs_modalities,
            proprio_obs=proprio_obs,
            grasping_mode=grasping_mode,
            grasping_direction="upper",
            **kwargs,
        )

        # setup eef parts
        self.parts = OrderedDict()
        for arm_name in self.arm_names:
            self.parts[arm_name] = BRPart(
                name=arm_name, parent=self, prim_path=f"{arm_name}_palm", eef_type="hand",
                offset_to_body=m.HAND_TO_BODY_OFFSET[arm_name], **kwargs
            )
        self.parts["head"] = BRPart(
            name="head", parent=self,  prim_path="eye", eef_type="head",
            offset_to_body=m.HEAD_TO_BODY_OFFSET, **kwargs
        )

        # whether to use ghost hands (visual markers to help visualize current vr hand pose)
        self._use_ghost_hands = use_ghost_hands
        # prim for the world_base_fixed_joint, used to reset the robot pose
        self._world_base_fixed_joint_prim = None
        # whether hand or body is in contact with other objects (we need this since checking contact list is costly)
        self._part_is_in_contact = {hand_name: False for hand_name in self.arm_names + ["body"]}

    @property
    def usd_path(self):
        return os.path.join(gm.ASSET_PATH, "models/behavior_robot/usd/BehaviorRobot.usd")

    @property
    def model_name(self):
        return "BehaviorRobot"

    @property
    def n_arms(self):
        return 2

    @property
    def arm_names(self):
        return ["left", "right"]

    @property
    def eef_link_names(self):
        dic = {arm: f"{arm}_{m.PALM_LINK_NAME}" for arm in self.arm_names}
        dic["head"] = "head"
        return dic

    @property
    def arm_link_names(self):
        """The head counts as a arm since it has the same 33 joint configuration"""
        return {arm: [f"{arm}_{component}" for component in m.COMPONENT_SUFFIXES] for arm in self.arm_names + ['head']}

    @property
    def finger_link_names(self):
        return {
            arm: [f"{arm}_{link_name}" for link_name in itertools.chain(m.FINGER_MID_LINK_NAMES, m.FINGER_TIP_LINK_NAMES)]
            for arm in self.arm_names
        }

    @property
    def base_joint_names(self):
        return [f"base_{component}_joint" for component in m.COMPONENT_SUFFIXES]

    @property
    def arm_joint_names(self):
        """The head counts as a arm since it has the same 33 joint configuration"""
        return {eef: [f"{eef}_{component}_joint" for component in m.COMPONENT_SUFFIXES] for eef in self.arm_names + ["head"]}

    @property
    def finger_joint_names(self):
        return {
            arm: (
                # palm-to-proximal joints.
                [f"{arm}_{to_link}__{arm}_{m.PALM_LINK_NAME}" for to_link in m.FINGER_MID_LINK_NAMES]
                +
                # proximal-to-tip joints.
                [f"{arm}_{to_link}__{arm}_{from_link}" for from_link, to_link in zip(m.FINGER_MID_LINK_NAMES, m.FINGER_TIP_LINK_NAMES)]
            )
            for arm in self.arm_names
        }

    @property
    def base_control_idx(self):
        joints = list(self.joints.keys())
        return [joints.index(joint) for joint in self.base_joint_names]

    @property
    def arm_control_idx(self):
        joints = list(self.joints.keys())
        return {
            arm: [joints.index(f"{arm}_{component}_joint") for component in m.COMPONENT_SUFFIXES]
            for arm in self.arm_names
        }

    @property
    def gripper_control_idx(self):
        joints = list(self.joints.values())
        return {arm: [joints.index(joint) for joint in arm_joints] for arm, arm_joints in self.finger_joints.items()}

    @property
    def camera_control_idx(self):
        joints = list(self.joints.keys())
        return [joints.index(f"head_{component}_joint") for component in m.COMPONENT_SUFFIXES]

    @property
    def _default_joint_pos(self):
        return np.zeros(self.n_joints)

    @property
    def controller_order(self):
        controllers = ["base", "camera"]
        for arm_name in self.arm_names:
            controllers += [f"arm_{arm_name}", f"gripper_{arm_name}"]
        return controllers

    @property
    def _default_controllers(self):
        controllers = {
            "base": "JointController",
            "camera": "JointController"
        }
        controllers.update({f"arm_{arm_name}": "JointController" for arm_name in self.arm_names})
        controllers.update({f"gripper_{arm_name}": "MultiFingerGripperController" for arm_name in self.arm_names})
        return controllers

    @property
    def _default_base_joint_controller_config(self):
        return {
            "name": "JointController",
            "control_freq": self._control_freq,
            "control_limits": self.control_limits,
            "use_delta_commands": False,
            "motor_type": "position",
            "dof_idx": self.base_control_idx,
            "command_input_limits": None,
        }

    @property
    def _default_arm_joint_controller_configs(self):
        dic = {}
        for arm in self.arm_names:
            dic[arm] = {
                "name": "JointController",
                "control_freq": self._control_freq,
                "motor_type": "position",
                "control_limits": self.control_limits,
                "dof_idx": self.arm_control_idx[arm],
                "command_input_limits": None,
                "use_delta_commands": False,
            }
        return dic

    @property
    def _default_gripper_multi_finger_controller_configs(self):
        dic = {}
        for arm in self.arm_names:
            dic[arm] = {
                "name": "MultiFingerGripperController",
                "control_freq": self._control_freq,
                "motor_type": "position",
                "control_limits": self.control_limits,
                "dof_idx": self.gripper_control_idx[arm],
                "command_input_limits": None,
                "mode": "independent",
            }
        return dic

    @property
    def _default_camera_joint_controller_config(self):
        return {
            "name": "JointController",
            "control_freq": self._control_freq,
            "motor_type": "position",
            "control_limits": self.control_limits,
            "dof_idx": self.camera_control_idx,
            "command_input_limits": None,
            "use_delta_commands": False,
        }

    @property
    def _default_gripper_joint_controller_configs(self):
        """
        Returns:
            dict: Dictionary mapping arm appendage name to default gripper joint controller config
                to control this robot's gripper
        """
        dic = {}
        for arm in self.arm_names:
            dic[arm] = {
                "name": "JointController",
                "control_freq": self._control_freq,
                "motor_type": "position",
                "control_limits": self.control_limits,
                "dof_idx": self.gripper_control_idx[arm],
                "command_input_limits": None,
                "use_delta_commands": False,
            }
        return dic

    @property
    def _default_controller_config(self):
        controllers = {
            "base": {"JointController": self._default_base_joint_controller_config},
            "camera": {"JointController": self._default_camera_joint_controller_config},
        }
        controllers.update(
            {
                f"arm_{arm_name}": {"JointController": self._default_arm_joint_controller_configs[arm_name]}
                for arm_name in self.arm_names
            }
        )
        controllers.update(
            {
                f"gripper_{arm_name}": {
                    "MultiFingerGripperController": self._default_gripper_multi_finger_controller_configs[arm_name],
                    "JointController": self._default_gripper_joint_controller_configs[arm_name],
                }
                for arm_name in self.arm_names
            }
        )
        return controllers

    def load(self):
        prim = super(BehaviorRobot, self).load()
        for part in self.parts.values():
            part.load()
        return prim

    def _post_load(self):
        super()._post_load()

    def _create_discrete_action_space(self):
        raise ValueError("BehaviorRobot does not support discrete actions!")

    def update_controller_mode(self):
        super().update_controller_mode()
        # set base joint properties
        for joint_name in self.base_joint_names:
            self.joints[joint_name].stiffness = m.BASE_JOINT_STIFFNESS
            self.joints[joint_name].max_effort = m.BASE_JOINT_MAX_EFFORT

        # set arm joint properties
        for arm in self.arm_joint_names:
            for joint_name in self.arm_joint_names[arm]:
                self.joints[joint_name].stiffness = m.ARM_JOINT_STIFFNESS
                self.joints[joint_name].max_effort = m.ARM_JOINT_MAX_EFFORT

        # set finger joint properties
        for arm in self.finger_joint_names:
            for joint_name in self.finger_joint_names[arm]:
                self.joints[joint_name].stiffness = m.FINGER_JOINT_STIFFNESS
                self.joints[joint_name].max_effort = m.FINGER_JOINT_MAX_EFFORT
                self.joints[joint_name].max_velocity = m.FINGER_JOINT_MAX_VELOCITY

    @property
    def base_footprint_link_name(self):
        """
        Name of the actual root link that we are interested in. 
        """
        return "base"

    @property
    def base_footprint_link(self):
        """
        Returns:
            RigidPrim: base footprint link of this object prim
        """
        return self._links[self.base_footprint_link_name]

    def get_position_orientation(self):
        return self.base_footprint_link.get_position_orientation()

    def set_position_orientation(self, position=None, orientation=None):
        super().set_position_orientation(position, orientation)
        # Move the joint frame for the world_base_joint
        if self._world_base_fixed_joint_prim is not None:
            if position is not None:
                self._world_base_fixed_joint_prim.GetAttribute("physics:localPos0").Set(tuple(position))
            if orientation is not None:
                self._world_base_fixed_joint_prim.GetAttribute("physics:localRot0").Set(lazy.pxr.Gf.Quatf(*np.float_(orientation)[[3, 0, 1, 2]]))

    @property
    def assisted_grasp_start_points(self):
        side_coefficients = {"left": np.array([1, -1, 1]), "right": np.array([1, 1, 1])}
        return {
            arm: [
                GraspingPoint(link_name=f"{arm}_{m.PALM_LINK_NAME}", position=m.PALM_BASE_POS),
                GraspingPoint(link_name=f"{arm}_{m.PALM_LINK_NAME}", position=m.PALM_CENTER_POS * side_coefficients[arm]),
                GraspingPoint(
                    link_name=f"{arm}_{m.THUMB_LINK_NAME}", position=m.THUMB_1_POS * side_coefficients[arm]
                ),
                GraspingPoint(
                    link_name=f"{arm}_{m.THUMB_LINK_NAME}", position=m.THUMB_2_POS * side_coefficients[arm]
                ),
            ]
            for arm in self.arm_names
        }

    @property
    def assisted_grasp_end_points(self):
        side_coefficients = {"left": np.array([1, -1, 1]), "right": np.array([1, 1, 1])}
        return {
            arm: [
                GraspingPoint(link_name=f"{arm}_{finger}", position=m.FINGER_TIP_POS * side_coefficients[arm])
                for finger in m.FINGER_TIP_LINK_NAMES
            ]
            for arm in self.arm_names
        }

    def update_hand_contact_info(self):
        """
        Helper function that updates the contact info for the hands and body. 
        Can be used in the future with device haptics to provide collision feedback.
        """
        self._part_is_in_contact["body"] = len(self.links["body"].contact_list()) > 0
        for hand_name in self.arm_names:
            self._part_is_in_contact[hand_name] = len(self.eef_links[hand_name].contact_list()) > 0 \
               or np.any([len(finger.contact_list()) > 0 for finger in self.finger_links[hand_name]])

    def teleop_data_to_action(self, teleop_action) -> np.ndarray:
        """
        Generates an action for the BehaviorRobot to perform based on teleop action data dict.

        Action space (all non-normalized values that will be clipped if they are too large)
        Body:
        - 6DOF pose - relative to body frame from previous frame
        Eye:
        - 6DOF pose - relative to body frame (where the body will be after applying this frame's action)
        Left hand, right hand (in that order):
        - 6DOF pose - relative to body frame (same as above)
        - 10DOF gripper joint rotation 

        Total size: 44
        """
        # Actions are stored as 1D numpy array
        action = np.zeros(self.action_dim)
        # Update body action space
        if teleop_action.is_valid["head"]:
            head_pos, head_orn = teleop_action.head[:3], T.euler2quat(teleop_action.head[3:6])
            des_body_pos = head_pos - np.array([0, 0, m.BODY_HEIGHT_OFFSET])
            des_body_rpy = np.array([0, 0, R.from_quat(head_orn).as_euler("XYZ")[2]])
            des_body_orn = T.euler2quat(des_body_rpy)
        else:
            des_body_pos, des_body_orn = self.get_position_orientation()
            des_body_rpy = R.from_quat(des_body_orn).as_euler("XYZ")
        action[self.controller_action_idx["base"]] = np.r_[des_body_pos, des_body_rpy]
        # Update action space for other VR objects
        for part_name, eef_part in self.parts.items():
            # Process local transform adjustments
            hand_data = 0
            if teleop_action.is_valid[part_name]: 
                des_world_part_pos, des_world_part_orn = teleop_action[part_name][:3], T.euler2quat(teleop_action[part_name][3:6])
                if part_name in self.arm_names:
                    # compute gripper action
                    if hasattr(teleop_action, "hand_data"):
                        # hand tracking mode, compute joint rotations for each independent hand joint
                        hand_data = teleop_action.hand_data[part_name]
                        hand_data = hand_data[:, :2].T.reshape(-1)
                    else:
                        # controller mode, map trigger fraction from [0, 1] to [-1, 1] range.
                        hand_data = teleop_action[part_name][6] * 2 - 1
                    action[self.controller_action_idx[f"gripper_{part_name}"]] = hand_data
                    # update ghost hand if necessary
                    if self._use_ghost_hands:
                        self.parts[part_name].update_ghost_hands(des_world_part_pos, des_world_part_orn)
            else:
               des_world_part_pos, des_world_part_orn = eef_part.local_position_orientation

            # Get local pose with respect to the new body frame
            des_local_part_pos, des_local_part_orn = T.relative_pose_transform(
                des_world_part_pos, des_world_part_orn, des_body_pos, des_body_orn
            )
            # apply shoulder position offset to the part transform to get final destination pose
            des_local_part_pos, des_local_part_orn = T.pose_transform(
                eef_part.offset_to_body, [0, 0, 0, 1], des_local_part_pos, des_local_part_orn
            )
            des_part_rpy = R.from_quat(des_local_part_orn).as_euler("XYZ")
            controller_name = "camera" if part_name == "head" else "arm_" + part_name
            action[self.controller_action_idx[controller_name]] = np.r_[des_local_part_pos, des_part_rpy]
            # If we reset, teleop the robot parts to the desired pose
            if part_name in self.arm_names and teleop_action.reset[part_name]:
                self.parts[part_name].set_position_orientation(des_local_part_pos, des_part_rpy)
        return action

arm_joint_names property

The head counts as a arm since it has the same 33 joint configuration

The head counts as a arm since it has the same 33 joint configuration

Returns:

Name Type Description
RigidPrim

base footprint link of this object prim

Name of the actual root link that we are interested in.

__init__(name, prim_path=None, uuid=None, scale=None, visible=True, visual_only=False, self_collisions=True, load_config=None, abilities=None, control_freq=None, controller_config=None, action_type='continuous', action_normalize=False, reset_joint_pos=None, obs_modalities='rgb', proprio_obs='default', grasping_mode='assisted', use_ghost_hands=True, **kwargs)

Initializes BehaviorRobot Args: use_ghost_hands (bool): whether to show ghost hand when the robot hand is too far away from the controller

Source code in omnigibson/robots/behavior_robot.py
def __init__(
        self,
        # Shared kwargs in hierarchy
        name,
        prim_path=None,
        uuid=None,
        scale=None,
        visible=True,
        visual_only=False,
        self_collisions=True,
        load_config=None,

        # Unique to USDObject hierarchy
        abilities=None,

        # Unique to ControllableObject hierarchy
        control_freq=None,
        controller_config=None,
        action_type="continuous",
        action_normalize=False,
        reset_joint_pos=None,

        # Unique to BaseRobot
        obs_modalities="rgb",
        proprio_obs="default",

        # Unique to ManipulationRobot
        grasping_mode="assisted",

        # unique to BehaviorRobot
        use_ghost_hands=True,

        **kwargs
):
    """
    Initializes BehaviorRobot
    Args:
        use_ghost_hands (bool): whether to show ghost hand when the robot hand is too far away from the controller
    """

    super(BehaviorRobot, self).__init__(
        prim_path=prim_path,
        name=name,
        uuid=uuid,
        scale=scale,
        visible=visible,
        fixed_base=True,
        visual_only=visual_only,
        self_collisions=self_collisions,
        load_config=load_config,
        abilities=abilities,
        control_freq=control_freq,
        controller_config=controller_config,
        action_type=action_type,
        action_normalize=action_normalize,
        reset_joint_pos=reset_joint_pos,
        obs_modalities=obs_modalities,
        proprio_obs=proprio_obs,
        grasping_mode=grasping_mode,
        grasping_direction="upper",
        **kwargs,
    )

    # setup eef parts
    self.parts = OrderedDict()
    for arm_name in self.arm_names:
        self.parts[arm_name] = BRPart(
            name=arm_name, parent=self, prim_path=f"{arm_name}_palm", eef_type="hand",
            offset_to_body=m.HAND_TO_BODY_OFFSET[arm_name], **kwargs
        )
    self.parts["head"] = BRPart(
        name="head", parent=self,  prim_path="eye", eef_type="head",
        offset_to_body=m.HEAD_TO_BODY_OFFSET, **kwargs
    )

    # whether to use ghost hands (visual markers to help visualize current vr hand pose)
    self._use_ghost_hands = use_ghost_hands
    # prim for the world_base_fixed_joint, used to reset the robot pose
    self._world_base_fixed_joint_prim = None
    # whether hand or body is in contact with other objects (we need this since checking contact list is costly)
    self._part_is_in_contact = {hand_name: False for hand_name in self.arm_names + ["body"]}

teleop_data_to_action(teleop_action)

Generates an action for the BehaviorRobot to perform based on teleop action data dict.

Action space (all non-normalized values that will be clipped if they are too large) Body: - 6DOF pose - relative to body frame from previous frame Eye: - 6DOF pose - relative to body frame (where the body will be after applying this frame's action) Left hand, right hand (in that order): - 6DOF pose - relative to body frame (same as above) - 10DOF gripper joint rotation

Total size: 44

Source code in omnigibson/robots/behavior_robot.py
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
    """
    Generates an action for the BehaviorRobot to perform based on teleop action data dict.

    Action space (all non-normalized values that will be clipped if they are too large)
    Body:
    - 6DOF pose - relative to body frame from previous frame
    Eye:
    - 6DOF pose - relative to body frame (where the body will be after applying this frame's action)
    Left hand, right hand (in that order):
    - 6DOF pose - relative to body frame (same as above)
    - 10DOF gripper joint rotation 

    Total size: 44
    """
    # Actions are stored as 1D numpy array
    action = np.zeros(self.action_dim)
    # Update body action space
    if teleop_action.is_valid["head"]:
        head_pos, head_orn = teleop_action.head[:3], T.euler2quat(teleop_action.head[3:6])
        des_body_pos = head_pos - np.array([0, 0, m.BODY_HEIGHT_OFFSET])
        des_body_rpy = np.array([0, 0, R.from_quat(head_orn).as_euler("XYZ")[2]])
        des_body_orn = T.euler2quat(des_body_rpy)
    else:
        des_body_pos, des_body_orn = self.get_position_orientation()
        des_body_rpy = R.from_quat(des_body_orn).as_euler("XYZ")
    action[self.controller_action_idx["base"]] = np.r_[des_body_pos, des_body_rpy]
    # Update action space for other VR objects
    for part_name, eef_part in self.parts.items():
        # Process local transform adjustments
        hand_data = 0
        if teleop_action.is_valid[part_name]: 
            des_world_part_pos, des_world_part_orn = teleop_action[part_name][:3], T.euler2quat(teleop_action[part_name][3:6])
            if part_name in self.arm_names:
                # compute gripper action
                if hasattr(teleop_action, "hand_data"):
                    # hand tracking mode, compute joint rotations for each independent hand joint
                    hand_data = teleop_action.hand_data[part_name]
                    hand_data = hand_data[:, :2].T.reshape(-1)
                else:
                    # controller mode, map trigger fraction from [0, 1] to [-1, 1] range.
                    hand_data = teleop_action[part_name][6] * 2 - 1
                action[self.controller_action_idx[f"gripper_{part_name}"]] = hand_data
                # update ghost hand if necessary
                if self._use_ghost_hands:
                    self.parts[part_name].update_ghost_hands(des_world_part_pos, des_world_part_orn)
        else:
           des_world_part_pos, des_world_part_orn = eef_part.local_position_orientation

        # Get local pose with respect to the new body frame
        des_local_part_pos, des_local_part_orn = T.relative_pose_transform(
            des_world_part_pos, des_world_part_orn, des_body_pos, des_body_orn
        )
        # apply shoulder position offset to the part transform to get final destination pose
        des_local_part_pos, des_local_part_orn = T.pose_transform(
            eef_part.offset_to_body, [0, 0, 0, 1], des_local_part_pos, des_local_part_orn
        )
        des_part_rpy = R.from_quat(des_local_part_orn).as_euler("XYZ")
        controller_name = "camera" if part_name == "head" else "arm_" + part_name
        action[self.controller_action_idx[controller_name]] = np.r_[des_local_part_pos, des_part_rpy]
        # If we reset, teleop the robot parts to the desired pose
        if part_name in self.arm_names and teleop_action.reset[part_name]:
            self.parts[part_name].set_position_orientation(des_local_part_pos, des_part_rpy)
    return action

update_hand_contact_info()

Helper function that updates the contact info for the hands and body. Can be used in the future with device haptics to provide collision feedback.

Source code in omnigibson/robots/behavior_robot.py
def update_hand_contact_info(self):
    """
    Helper function that updates the contact info for the hands and body. 
    Can be used in the future with device haptics to provide collision feedback.
    """
    self._part_is_in_contact["body"] = len(self.links["body"].contact_list()) > 0
    for hand_name in self.arm_names:
        self._part_is_in_contact[hand_name] = len(self.eef_links[hand_name].contact_list()) > 0 \
           or np.any([len(finger.contact_list()) > 0 for finger in self.finger_links[hand_name]])